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1 Introduction

The Performance Estimation Problem (PEP) methodology
has been recently introduced [1, 2] to compute the exact
worst-case performance of a first-order optimization method
on a given class of function, e.g. L-smooth µ-strongly con-
vex functions. In this work, we propose to solve PEP for the
class of quadratic functions of the form f (x) = 1

2 xT Qx with
µI ⪯ Q ⪯ LI for given parameters µ and L, i.e. L-smooth
µ-strongly convex homogeneous quadratic functions.

2 Problem statement

PEP can be formulated as semidefinite programs where the
matrix variable is the 2N ×2N Gram matrix G = PT P with
P =

(
x1 · · · xN g1 · · · gN

)
. In the PEP context, the xi’s and

gi’s are, respectively, the iterates and the gradient at the it-
erates, produced by the N iterations of the given method.
However, in this work, we will consider for simplicity that
the xi’s and gi’s are just given.

We define a Gram matrix associated to a quadratic function.
Definition 1. A symmetric matrix G ∈ S2N is a (µ,L,N)-
quadratic-Gram matrix if and only if there exist a dimension
d ∈ N, a symmetric matrix Q ∈ Sd with µI ⪯ Q ⪯ LI and a
sequence xi ∈ Rd for i = 1, . . . ,N such that G = PT P with

P =
(
x1 · · · xN

g1︷︸︸︷
Qx1 · · ·

gN︷︸︸︷
QxN

)
∈ Rd×2N . (1)

The set of all (µ,L,N)-quadratic-Gram matrices is de-
noted Gµ,L,N . It can be shown that any conic combina-
tion of (µ,L,N)-quadratic-Gram matrices is also a (µ,L,N)-
quadratic-Gram matrix, thus, the set Gµ,L,N is a convex cone.
Theorem 1. The set of all (µ,L,N)-quadratic-Gram matri-
ces Gµ,L,N is a convex cone.

Since the set Gµ,L,N is convex, we seek an explicit convex
description of it in order to add the constraints to PEP.

3 Case with N = 1 point

First, we look at the case N = 1 where we only have one
point x1 and its gradient g1. It can be shown that the set
of (µ,L,1)-quadratic-Gram matrices of one point is exactly
described by three convex inequalities.

Theorem 2. Given a symmetric matrix G =

(
g11 g12
g12 g22

)
,

the conditions

g11 ≥0 (2)

g2
12 ≤g11g22 (3)

g22 ≤−µLg11 +(µ +L)g12 (4)

are necessary and sufficient conditions for G ∈ Gµ,L,1.

4 Case with N points
Now, we consider the general case N ≥ 1. First of all, we
can write a quadratic-Gram matrix under the following form

G =

(
XT X XT QX

XT QX XT Q2X

)
(5)

where X = (x1 · · · xN) ∈ Rd×N . In addition to the global
symmetry and positive semidefiniteness of G, hence of di-
agonal blocks XT X and XT Q2X , we observe that off diago-
nal block XT QX is also symmetric and positive semidefinite.
Actually, it is possible to find several necessary characteriza-
tions of a quadratic-Gram matrix (see for example Theorem
3 in [3] in a different context). However, it appears to be
much less straightforward to check or prove the sufficiency,
which is the question we are investigating.

5 Conclusion and perspectives
Theorem 1 ensures that the set of quadratic-Gram matrices
is convex. Therefore it is likely that there exists a way to
describe the set with an explicit list of convex constraints.
Once these constraints are identified and we are able to solve
PEP on quadratic functions, it will be possible to measure
and quantify the gap between the worst-case performance of
a given first-order optimization method on general L-smooth
µ-strongly convex functions and on quadratic functions.
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