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WORST-CASE PERFORMANCE OF A METHOD ON A CLASS OF FUNCTIONS

Common question in optimization :

of an optimization method M on
mXInf(X)

where f € F has some properties (smoothness, convexity,...) ?
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Common question in optimization :

of an optimization method M on
mXInf(X)

where f € F has some properties (smoothness, convexity,...) ?

Example :

M =

Worst-case performance of gradient method on L-smooth convex functions
(after N iterations) ?

N~
N
=
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PERFORMANCE ESTIMATION PROBLEM (PEP)

Theoretical and practical framework to analyze performance of
optimization methods on problem classes.

* Performance of first-order methods...Drori & Teboulle 2013

- Convex interpolation and performance estimation..Taylor 2017
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Theoretical and practical framework to analyze performance of
optimization methods on problem classes.

* Performance of first-order methods...Drori & Teboulle 2013

- Convex interpolation and performance estimation..Taylor 2017
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INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:
- N steps of gradient method X1 = X — %Vf(xh)
- L-smooth convex functions f

PEP

max Xy) — f(x*
points xg,x*, function f f( N) f( )

st f L-smooth convex,
1
Xep1 = Xp = 7 V),
[IX* = xoll <1,
Vf(x*) = 0.
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INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

- N steps of gradient method X1 = X — %Vf(xh)

PEP
max fow) — )

points Xp,x*,
s.t.
1
Xk1 = Xk — ZVf(Xk),
[IX* = xoll <1,
Vf(x*) = 0.



INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

- N steps of gradient method X1 = X — %Vf(xh)
- L-smooth convex functions f

PEP

points xg,x*, function f
st f L-smooth convex,
1
Xt = X6 = T VI0X)
X" —xoll <1,
Vf(x*) = 0.



INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Output : f(xy) — f* < 5555 and worst function f achieving
it.



PEP AS FINITE-DIMENSIONAL PROBLEM

finfinite-dimensional but algorithm only sees Xy, f(xx) and Vf(x)...
PEP

max Xy) — f(x*
points xg,x*,function f f( N) f( )

st f L-smooth convex,

1
Xkt1 = Xk — va(xk)a
|[X* = xol| <1,
Vi(x*) = 0.
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finfinite-dimensional but algorithm only sees Xy, f(xx) and Vf(x)...

PEP
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PEP AS FINITE-DIMENSIONAL PROBLEM

finfinite-dimensional but algorithm only sees Xy, f(xx) and Vf(x)...
PEP

~ max fu =F
POINts Xg,X* ,fr,f* ,Gr,g*

st

1
X1 = Xp — [Qre

X" = Xol| <1

)

g* = 0.

to reformulate.

At the end, convex semidefinite problem efficiently solvable !



CURRENTLY FORMULABLE PEP

Interpolation conditions for L-smooth convex functions
Given Xg, gr and fp,
fXe)  =fr VR,

if and only if
Vf(xe) =gk VR,

3 L-smooth convex f such that {

. 1 o
fi = fre + gr(X; — X)) + ZHQ; —gell® Y,k



CURRENTLY FORMULABLE PEP

Interpolation conditions for L-smooth convex functions
Given Xg, gr and fp,
fXe)  =fr VR,

if and only if
Vf(xe) =gk VR,

3 L-smooth convex f such that {

. 1 o
fi = fre + gr(X; — X)) + ZHQ; —gell® Y,k

Remark : Interpolation conditions (and PEP formulation) for
numerous function classes : non-smooth, L-smooth, convex,
p-strongly convex,...



EXPLOITATION OF PEP

Performance of 10 gradient method steps

10°

— theory
® h=1
Perf.
criterion — PEP
ol . @ h~ 1834

0 0.5 1 15 2

Step size h

Remarks :

- theory suggests a step size of 1 and PEP of = 1.834;
- PEP provides tight results.



EXTENSION OF PEP : PROBLEMS INVOLVING MATRICES
We would like to analyze the worst performance of methods on
problems ;

© miny %XTOX
- miny g(Ax)
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We would like to analyze the worst performance of methods on
problems involving matrices:

© miny %X‘TQX
- miny g(Ax)

Desired interpolation conditions
Given X, and y,

JA such that y, = Ax, Vkif and only if
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EXTENSION OF PEP : PROBLEMS INVOLVING MATRICES

We would like to analyze the worst performance of methods on
problems involving matrices:

© miny %XTOX
- miny g(Ax)

Desired interpolation conditions
Given X, and y,

JA such that y, = Ax, Vkif and only if

(interpolation conditions).

fix) = %XTQX = gp = Vf(xx) = Qxy,
f(X) = g(Ax) = g = Vf(xr) = A'Vg(Ax)



GRAM MATRIX TECHNIQUE

Reminder : PEP is reformulated as an SDP.
Variables :

-+ Function values f;
- Scalar products x/xy, X/ gk and g/ ge.
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GRAM MATRIX TECHNIQUE

Reminder : PEP is reformulated as an SDP.
Variables :

-+ Function values f;
- Scalar products x/xy, X/ gk and g/ ge.

;
G= (X1 s XN g1 e QN> (X1 e XN g1 e QN)
T T T T
X1 X1 e X Xn X3gh e XqGn
T T T T
A e XX Xygr s Xngn
= T T T T
gixa oo GiXv G1g1 0 Gagw
T T T T
gnxa oo GuXne gngr oo gagn

We can formulate interpolation conditions as semidefinite constraint
i.e. linear matrix inequality, on the (blocks of the) Gram matrix.




OBTAINING THE INTERPOLATION CONDITIONS

Inspecting Gram matrix of sequences y, and x, linked by a symmetrix
matrix Q, i.e. yr = Qxg, with 0 < Q < LI

G:(x1 XN Y e VN)T<><1 Xy Vi e )/N>
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OBTAINING THE INTERPOLATION CONDITIONS

Inspecting Gram matrix of sequences y, and x, linked by a symmetrix
matrix Q, i.e. yr = Qxg, with 0 < Q < LI

G:<x1 XN Y e VN)T<X1 Xy Vi e )/N>

:<x1 e Xy Qe QXN>T(X1 Xy Qe QXN)

T T
2 (x ax) (x ax)= (xXToXX >)<<TOQ;;> ) (BAT ?>

B
=
B

Remark : Since G is a Gram matrix, G is symmetric and positive semidefinite.

Y
~lo




INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

XX Xy A B
let G £ (YTX YW) £ (BT C) =0and L eR.

Theorem (Symmetric matrix with spectrum between 0 and L)

. XX XTQX . . .
G can be written as or a symmetric matrix Q with
xiax xrqex ) Forasy g

0 < Q= Llifand only if
{B:BT,
B = .
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INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

XX Xy A B
let G £ (YTX YW) £ (BT C) = 0and LeR.

Theorem (Symmetric matrix with spectrum between ;. and L)
. XX XTQX . . .
G can be written as or a symmetric matrix Q with
XTX xTozx) forasy 8
Q =< Llif and only if

B=8",
B> 4+ ¢

+L

Remark :

- We only consider homogeneous quadratic functions;
- Similar Theorem for non-symmetric matrix with bounded
singular values.



PERFORMANCE OF GRADIENT METHOD ON QUADRATICS

Worst-performance of gradient method on miny %XTQX.

==].-smooth convex functions
—Quadratic functions with 0 < Q =< LI|

o
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PERFORMANCE OF GRADIENT METHOD ON g(AX)

Worst-performance of gradient method on min, g(Ax).

Perf. f(an)— f*

10°

== L-smooth convex functions f(z)

— L-smooth convex functions g(Az)

0.5



PEP TO ANALYZE PROBLEMS INVOLVING MATRICES

State of the art : PEP allows to obtain the worst-case perfor-
mance of an optimization method on a class of functions.

Our contribution : Extending PEP to methods and classes in-
volving matrices: 1x7QX, g(Ax), ...

Futur research : Analyzing more complex problems and iden-
tifying why gaps appear.




DEFINITIONS AND NOTATIONS

fis L-smooth when

IVA(x) = VEW)I| < Llx =ylI-

First-order method of the form

N—1
XN = X — Z hNJ.
i=0



CASE =1L

A B
Let G = =0and u=LeR
<BT C) - Hen e

~

Theorem
: XX XTQx : :
G can be written as XTOX XTQ2X for a symmetric matrix Q

with LI < Q < LI if and only if

B=8,
C < L?A.




INTERPOLATION CONDITION FOR L-SMOOTH CONVEX FUNCTIONS

f L-smooth convex if and only if

FX) 2 1) + VI )0~ ) + 5 19700 = TP vy

fL-smooth convex : f(xx) =fr, Vf(Xx) =gk ifand only if

1 ..
fi 2 fi+ 9/ = x) + 5 llgi = gl Vi)




SDP FORMULATION

N steps of gradient method on L-smooth convex functions.

Matrix variable: G = (go ... gn X0)"(go ... gn Xo) € SN+2
Parameters:

“hi=(0...070...01) € R"?

-ui=(0...010 ...O)ERN+2

© 24 = uj(h,»—hj)T—k(hi—hj)uanL%(u,'—u,-)(u,-—uj)T
© Ar = Uns1Uf

s =5

st fi—fi+Tr(GA;) <0, Vi,j
Tr(GA;j) — R2 <0, Vi,j
G > 0.
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