

TOWARDS PERFORMANCE ESTIMATION PROBLEMS ON QUADRATIC FUNCTIONS

Nizar Bousselmi

Supervisors: François Glineur and Julien Hendrickx

Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)

Université catholique de Louvain (UCLouvain)

WORST-CASE PERFORMANCE OF A METHOD ON A CLASS OF FUNCTIONS

Common question in optimization:

Worst-case performance of an optimization method ${\mathcal M}$ on

$$\min_{x} f(x)$$

where $f \in \mathcal{F}$ has some properties (smoothness, convexity,...)?

1

WORST-CASE PERFORMANCE OF A METHOD ON A CLASS OF FUNCTIONS

Common question in optimization:

Worst-case performance of an optimization method ${m {\cal M}}$ on

$$\min_{x} f(x)$$

where $f \in \mathcal{F}$ has some properties (smoothness, convexity,...)?

Example:

Worst-case performance of gradient method on *L*-smooth convex functions (after *N* iterations)?

$$f(x_N)-f^*\leq \frac{L}{2}\frac{1}{2N+1}.$$

1

Theoretical and practical framework to analyze **performance** of optimization methods on problem classes.

- Performance of first-order methods...Drori & Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

Theoretical and practical framework to analyze **performance** of optimization methods on problem classes.

- · Performance of first-order methods...Drori & Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

Theoretical and practical framework to analyze **performance** of optimization methods on problem classes.

- · Performance of first-order methods...Drori & Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

Example:

Theoretical and practical framework to analyze **performance** of optimization methods on problem classes.

- · Performance of first-order methods...Drori & Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

Our contribution:

Example:

- N steps of gradient method $x_{k+1} = x_k \frac{1}{L} \nabla f(x_k)$
- L-smooth convex functions f

$$\max_{\text{points }x_k,x^*,\text{ function }f} \quad f(x_N) - f(x^*)$$
 s.t.
$$f \text{ L-smooth convex,}$$

$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k),$$

$$||x^* - x_0|| \leq 1,$$

$$\nabla f(x^*) = 0.$$

Example:

- N steps of gradient method $x_{k+1} = x_k \frac{1}{L}\nabla f(x_k)$
- L-smooth convex functions f

max
$$f(x_N) - f(x^*)$$

s.t. f L -smooth convex, $x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$, $||x^* - x_0|| \le 1$, $\nabla f(x^*) = 0$.

Example:

- N steps of gradient method $x_{k+1} = x_k \frac{1}{L}\nabla f(x_k)$
- L-smooth convex functions f

max
$$f(x_N) - f(x^*)$$
 s.t. $f(x_N) - f(x^*)$ s.t. $f(x_N) - f(x^*)$ $f(x^*) = 0$.

Example:

- N steps of gradient method $x_{k+1} = x_k \frac{1}{L}\nabla f(x_k)$
- L-smooth convex functions f

max points
$$x_k, x^*$$
, function f
$$f(x_N) - f(x^*)$$
 s.t.
$$f \text{ L-smooth convex,}$$

$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k),$$

$$||x^* - x_0|| \le 1,$$

$$\nabla f(x^*) = 0.$$

Example:

- N steps of gradient method $x_{k+1} = x_k \frac{1}{L} \nabla f(x_k)$
- L-smooth convex functions f

max $f(x_N) - f(x^*)$ s.t. f L-smooth convex, $x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k),$ $||x^* - x_0|| \le 1,$ $\nabla f(x^*) = 0.$

Output: $f(x_N) - f^* \le \frac{L}{2} \frac{1}{2N+1}$ and worst function f achieving it.

f infinite-dimensional but algorithm only sees x_k , $f(x_k)$ and $\nabla f(x_k)$...

PEP $\max_{\text{points } x_k, x^*, \text{function } f} f(x_N) - f(x^*)$ s.t. f L-smooth convex, $X_{k+1} = X_k - \frac{1}{l} \nabla f(X_k),$ $||x^* - x_0|| \le 1$, $\nabla f(x^*) = 0.$

f infinite-dimensional but algorithm only sees x_k , $f(x_k)$ and $\nabla f(x_k)$...

PFP $\max_{\text{points } x_k, x^*, f_k, f^*, g_k, g^*} f_N - f^*$ $\exists f \text{ L-smooth convex}: f(x_b) = f_b, \nabla f(x_b) = g_b,$ s.t. $f(x^*) = f^*, \nabla f(x^*) = g^*,$ $X_{k+1} = X_k - \frac{1}{l} g_k$ $||x^* - x_0|| \le 1$, $a^* = 0.$

f infinite-dimensional but algorithm only sees x_k , $f(x_k)$ and $\nabla f(x_k)$...

PEP
$$\max_{\substack{\text{points } x_k, x^*, f_k, f^*, g_k, g^* \\ \text{s.t.}}} f_N - f^*$$
s.t.
$$\exists f \text{ L-smooth convex}: \quad f(x_k) = f_k, \quad \nabla f(x_k) = g_k, \\ f(x^*) = f^*, \quad \nabla f(x^*) = g^*, \\ x_{k+1} = x_k - \frac{1}{L}g_k$$

$$||x^* - x_0|| \le 1,$$

$$g^* = 0.$$

Interpolation condition to reformulate.

f infinite-dimensional but algorithm only sees x_k , $f(x_k)$ and $\nabla f(x_k)$...

PEP
$$\max_{\substack{\text{points } x_k, x^*, f_k, f^*, g_k, g^* \\ \text{s.t.}}} f_N - f^*$$
s.t.
$$\exists f \text{ L-smooth convex}: \quad f(x_k) = f_k, \quad \nabla f(x_k) = g_k, \\ f(x^*) = f^*, \quad \nabla f(x^*) = g^*, \\ x_{k+1} = x_k - \frac{1}{L}g_k \\ ||x^* - x_0|| \le 1, \\ g^* = 0.$$

Interpolation condition to reformulate.

At the end, convex **semidefinite problem** efficiently solvable!

CURRENTLY FORMULABLE PEP

Interpolation conditions for L-smooth convex functions

Given x_k , g_k and f_k ,

 \exists *L*-smooth convex *f* such that $\begin{cases} f(x_k) &= f_k \ \forall k, \\ \nabla f(x_k) &= g_k \ \forall k, \end{cases}$ if and only if

$$f_j \ge f_k + g_k^{\mathsf{T}}(x_j - x_k) + \frac{1}{2\mathsf{L}}||g_j - g_k||^2 \quad \forall j, k.$$

5

CURRENTLY FORMULABLE PEP

Interpolation conditions for L-smooth convex functions

Given x_k , g_k and f_k ,

 \exists *L*-smooth convex *f* such that $\begin{cases} f(x_k) &= f_k \ \forall k, \\ \nabla f(x_k) &= g_k \ \forall k, \end{cases}$ if and only if

$$f_j \geq f_k + g_k^{\mathsf{T}}(x_j - x_k) + \frac{1}{2\mathsf{L}}||g_j - g_k||^2 \quad \forall j, k.$$

Remark: Interpolation conditions (and PEP formulation) for numerous function classes: non-smooth, L-smooth, convex, μ -strongly convex,...

EXPLOITATION OF PEP

Remarks:

- theory suggests a step size of 1 and PEP of \approx 1.834;
- PEP provides tight results.

We would like to analyze the worst performance of methods on problems involving matrices:

- $\min_{X} \frac{1}{2} X^T Q X$
- · $\min_{x} g(Ax)$
- ...

We would like to analyze the worst performance of methods on problems involving matrices:

- $\min_{X} \frac{1}{2} X^T Q X$
- · $min_x g(Ax)$
- . . .

Desired interpolation conditions

Given x_k and y_k ,

 $\exists A$ such that $y_k = Ax_k \ \forall k$ if and only if

(interpolation conditions).

We would like to analyze the worst performance of methods on problems involving matrices:

- $\min_{X} \frac{1}{2} X^T Q X$
- · $min_x g(Ax)$
- ...

Desired interpolation conditions

Given x_k and y_k ,

 $\exists A \text{ such that } y_k = Ax_k \ \forall k \text{ if and only if}$

(interpolation conditions).

$$f(x) = \frac{1}{2} x^{\mathsf{T}} Q x \Rightarrow g_k = \nabla f(x_k) = Q x_k$$

$$f(x) = g(A x) \Rightarrow g_k = \nabla f(x_k) = A^{\mathsf{T}} \nabla g(A x_k)$$

We would like to analyze the worst performance of methods on problems involving matrices:

- $\min_{X} \frac{1}{2} X^T Q X$
- $\min_{x} g(Ax)$
- ...

Desired interpolation conditions

Given x_k and y_k ,

 $\exists A \text{ such that } y_k = Ax_k \ \forall k \text{ if and only if}$

(interpolation conditions).

$$f(x) = \frac{1}{2} x^{\mathsf{T}} Q x \Rightarrow g_k = \nabla f(x_k) = Q x_k$$

$$f(x) = g(A x) \Rightarrow g_k = \nabla f(x_k) = A^{\mathsf{T}} \nabla g(A x_k)$$

GRAM MATRIX TECHNIQUE

Reminder: PEP is reformulated as an SDP.

Variables:

- Function values f_k ;
- Scalar products $x_j^T x_k$, $x_j^T g_k$ and $g_j^T g_k$.

GRAM MATRIX TECHNIQUE

Reminder: PEP is reformulated as an SDP.

Variables:

- Function values f_k ;
- Scalar products $x_i^T x_k$, $x_i^T g_k$ and $g_i^T g_k$.

$$G = \begin{pmatrix} x_{1} & \cdots & x_{N} & g_{1} & \cdots & g_{N} \end{pmatrix}^{T} \begin{pmatrix} x_{1} & \cdots & x_{N} & g_{1} & \cdots & g_{N} \end{pmatrix}$$

$$= \begin{pmatrix} x_{1}^{T}x_{1} & \cdots & x_{1}^{T}x_{N} & x_{1}^{T}g_{1} & \cdots & x_{1}^{T}g_{N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_{N}^{T}x_{1} & \cdots & x_{N}^{T}x_{N} & x_{N}^{T}g_{1} & \cdots & x_{N}^{T}g_{N} \\ g_{1}^{T}x_{1} & \cdots & g_{1}^{T}x_{N} & g_{1}^{T}g_{1} & \cdots & g_{1}^{T}g_{N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ g_{N}^{T}x_{1} & \cdots & g_{N}^{T}x_{N} & g_{N}^{T}g_{1} & \cdots & g_{N}^{T}g_{N} \end{pmatrix}$$

GRAM MATRIX TECHNIQUE

Reminder: PEP is reformulated as an SDP.

Variables:

- Function values f_k ;
- Scalar products $x_i^T x_k$, $x_i^T g_k$ and $g_i^T g_k$.

$$G = \begin{pmatrix} x_{1} & \cdots & x_{N} & g_{1} & \cdots & g_{N} \end{pmatrix}^{T} \begin{pmatrix} x_{1} & \cdots & x_{N} & g_{1} & \cdots & g_{N} \end{pmatrix}$$

$$= \begin{pmatrix} x_{1}^{T}x_{1} & \cdots & x_{1}^{T}x_{N} & x_{1}^{T}g_{1} & \cdots & x_{1}^{T}g_{N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_{N}^{T}x_{1} & \cdots & x_{N}^{T}x_{N} & x_{N}^{T}g_{1} & \cdots & x_{N}^{T}g_{N} \\ g_{1}^{T}x_{1} & \cdots & g_{1}^{T}x_{N} & g_{1}^{T}g_{1} & \cdots & g_{1}^{T}g_{N} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ g_{N}^{T}x_{1} & \cdots & g_{N}^{T}x_{N} & g_{N}^{T}g_{1} & \cdots & g_{N}^{T}g_{N} \end{pmatrix}$$

We can formulate interpolation conditions as semidefinite constraint i.e. linear matrix inequality, on the (blocks of the) Gram matrix.

OBTAINING THE INTERPOLATION CONDITIONS

Inspecting Gram matrix of sequences y_k and x_k linked by a symmetrix matrix Q, i.e. $y_k = Qx_k$, with $0 \le Q \le LI$

$$G = \begin{pmatrix} x_1 & \cdots & x_N & y_1 & \cdots & y_N \end{pmatrix}^T \begin{pmatrix} x_1 & \cdots & x_N & y_1 & \cdots & y_N \end{pmatrix}$$

$$= \begin{pmatrix} x_1 & \cdots & x_N & Qx_1 & \cdots & Qx_N \end{pmatrix}^T \begin{pmatrix} x_1 & \cdots & x_N & Qx_1 & \cdots & Qx_N \end{pmatrix}$$

$$\triangleq \begin{pmatrix} X & QX \end{pmatrix}^T \begin{pmatrix} X & QX \end{pmatrix} = \begin{pmatrix} X^TX & X^TQX \\ X^TQX & X^TQ^2X \end{pmatrix} \triangleq \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$$

OBTAINING THE INTERPOLATION CONDITIONS

Inspecting Gram matrix of sequences y_k and x_k linked by a symmetrix matrix Q, i.e. $y_k = Qx_k$, with $0 \le Q \le LI$

$$G = \begin{pmatrix} x_1 & \cdots & x_N & y_1 & \cdots & y_N \end{pmatrix}^T \begin{pmatrix} x_1 & \cdots & x_N & y_1 & \cdots & y_N \end{pmatrix}$$

$$= \begin{pmatrix} x_1 & \cdots & x_N & Qx_1 & \cdots & Qx_N \end{pmatrix}^T \begin{pmatrix} x_1 & \cdots & x_N & Qx_1 & \cdots & Qx_N \end{pmatrix}$$

$$\triangleq \begin{pmatrix} X & QX \end{pmatrix}^T \begin{pmatrix} X & QX \end{pmatrix} = \begin{pmatrix} X^TX & X^TQX \\ X^TQX & X^TQ^2X \end{pmatrix} \triangleq \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$$

$$\Rightarrow \begin{cases} B = B^T, \\ B \succeq \frac{C}{L}. \end{cases}$$

Remark: Since G is a Gram matrix, G is symmetric and positive semidefinite.

INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

Let
$$G \triangleq \begin{pmatrix} X^T X & X^T Y \\ Y^T X & Y^T Y \end{pmatrix} \triangleq \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \succeq 0$$
 and $L \in \mathbb{R}$.

Theorem (Symmetric matrix with spectrum between 0 and L)

G can be written as
$$\begin{pmatrix} X^TX & X^TQX \\ X^TQX & X^TQ^2X \end{pmatrix}$$
 for a symmetric matrix Q with $0 \le Q \le LI$ if and only if

$$\begin{cases} B = B^{\mathsf{T}}, \\ B \succeq \frac{\mathsf{C}}{\mathsf{L}}. \end{cases}$$

INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

Let
$$G \triangleq \begin{pmatrix} X^T X & X^T Y \\ Y^T X & Y^T Y \end{pmatrix} \triangleq \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \succeq 0$$
 and $\mu \leq L \in \mathbb{R}$.

Theorem (Symmetric matrix with spectrum between μ and L)

G can be written as
$$\begin{pmatrix} X^TX & X^TQX \\ X^TQX & X^TQ^2X \end{pmatrix}$$
 for a symmetric matrix Q with $\mu I \preceq Q \preceq LI$ if and only if

$$\begin{cases} B = B^{T}, \\ B \succeq \frac{\mu L}{\mu + L} A + \frac{1}{\mu + L} C. \end{cases}$$

INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

Let
$$G \triangleq \begin{pmatrix} X^T X & X^T Y \\ Y^T X & Y^T Y \end{pmatrix} \triangleq \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \succeq 0$$
 and $\mu \leq L \in \mathbb{R}$.

Theorem (Symmetric matrix with spectrum between μ and L)

G can be written as
$$\begin{pmatrix} X^TX & X^TQX \\ X^TQX & X^TQ^2X \end{pmatrix}$$
 for a symmetric matrix Q with $\mu I \preceq Q \preceq LI$ if and only if

$$\begin{cases} B = B^{\mathsf{T}}, \\ B \succeq \frac{\mu L}{\mu + L} A + \frac{1}{\mu + L} C. \end{cases}$$

Remark:

- · We only consider homogeneous quadratic functions;
- Similar Theorem for non-symmetric matrix with bounded singular values.

PERFORMANCE OF GRADIENT METHOD ON QUADRATICS

Worst-performance of gradient method on $\min_{x} \frac{1}{2} x^{T} Q x$.

Performance of gradient method on g(Ax)

Worst-performance of gradient method on $\min_{x} g(Ax)$.

PEP TO ANALYZE PROBLEMS INVOLVING MATRICES

State of the art : PEP allows to obtain the worst-case performance of an optimization method on a class of functions.

Our contribution : Extending PEP to methods and classes involving matrices: $\frac{1}{2}x^TQX$, g(Ax), ...

Futur research: Analyzing more complex problems and identifying why gaps appear.

DEFINITIONS AND NOTATIONS

f is L-smooth when

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||.$$

First-order method of the form

$$x_N = x_0 - \sum_{i=0}^{N-1} h_{N,i}.$$

$$\mathsf{CASE}\ \mu = \mathsf{L}$$

Let
$$G = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \succeq 0$$
 and $\mu = L \in \mathbb{R}$.

Theorem

G can be written as $\begin{pmatrix} X^TX & X^TQX \\ X^TQX & X^TQ^2X \end{pmatrix}$ for a symmetric matrix Q with LI \leq Q \leq LI if and only if

$$B = B^{\mathsf{T}},$$
$$C \leq L^2 A.$$

INTERPOLATION CONDITION FOR L-SMOOTH CONVEX FUNCTIONS

f L-smooth convex if and only if

$$f(x) \ge f(y) + \nabla f^{\mathsf{T}}(y)(x - y) + \frac{1}{2I}||\nabla f(x) - \nabla f(y)||^2 \quad \forall x, y$$

$$f$$
 L-smooth convex : $f(x_k) = f_k$, $\nabla f(x_k) = g_k$ if and only if

$$f_i \ge f_j + g_j^{\mathsf{T}}(x_i - x_j) + \frac{1}{2I}||g_i - g_j||^2 \quad \forall i, j$$

SDP FORMULATION

N steps of gradient method on L-smooth convex functions.

Matrix variable: $G = (g_0 \dots g_N x_0)^T (g_0 \dots g_N x_0) \in \mathbb{S}^{N+2}$ Parameters:

•
$$h_i = (0 \dots 0 \frac{-1}{L} 0 \dots 0 1) \in \mathbb{R}^{N+2}$$

• $u_i = (0 \dots 0 1 0 \dots 0) \in \mathbb{R}^{N+2}$
• $2A_{ii} = u_i(h_i - h_i)^T + (h_i - h_i)u_i^T + \frac{1}{L}(u_i - u_i)(u_i - u_i)^T$

$$\cdot A_R = u_{N+1} u_{N+1}^T$$

$$\max_{G \in \mathbb{S}^{N+2}, f \in \mathbb{R}^{N+1}} f_N - f^*$$
s.t.
$$f_j - f_i + \text{Tr}(GA_{ij}) \le 0, \quad \forall i, j$$

$$\text{Tr}(GA_{ij}) - R^2 \le 0, \quad \forall i, j$$

$$G \succeq 0.$$