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1 Introduction

The Performance Estimation Problem (PEP) framework was
introduced to automatically compute worst-case guarantees
on the performance of a given optimization method when
applied to a given function class F , by formulating the
search for the worst-case function of F as an optimization
problem [1]. To render this infinite-dimensional problem
tractable and convex, we only consider the finite set S of it-
erates and minimizer, and impose conditions on S to ensure
its consistency with F .
Hence, the PEP framework relies on interpolation condi-
tions, i.e. necessary and sufficient conditions that a data set
S must satisfy to ensure the existence of a function of F ,
defined on the whole space and that interpolates S.

2 Second-order interpolation conditions

Presently, the only existing interpolation conditions are first-
order conditions, i.e. conditions involving only function and
subgradient values, hence confining the PEP framework to
the analysis of first-order methods. We propose second-
order interpolation conditions for the class HM of smooth
univariate functions with M-Lipschitz continuous Hessian,
i.e. functions f : R→ R such that

| f ′′(x)− f ′′(y)| ≤M|x− y| ∀x,y ∈ R. (1)

We define HM-interpolability as:

Definition 1 The set {(xi, fi,gi,hi)}i=1,...,N ∈ R4×N is HM-
interpolable, if and only if,

∃ f ∈HM :





f (xi) = fi

f ′(xi) = gi

f ′′(xi) = hi

∀i = 1, . . . ,N (2)

Our main result provides interpolation conditions for HM .

Theorem 1 The set {(xi, fi,gi,hi)}i=1,...,N is HM-
interpolable, if, and only if, ∀i, j = 1, . . . ,N,




|∆hi j| ≤M|∆xi j|

T f
i j ≥−M

6 |∆xi j|3 +
(

T g
i j+

M
2 ∆xi j |∆xi j |

)2

2(∆hi j+M|∆xi j |)
+

(∆hi j+M|∆xi j |)
3

96M2

(3)

where ∆xi j = x j − xi, T f
i j = f j − fi− gi∆xi j − hi

2 ∆x2
i j, T g

i j =
g j−gi−hi∆xi j, and ∆hi j = h j−hi.

3 Application to Performance Estimation Problem

With a second-order interpolation condition, we can con-
sider analyzing the worst-case performance of second-order
methods, e.g. Newton’s method. Since (3) cannot be formu-
lated as convex semidefinite constraints as done classically
in the PEP framework [2], our conditions cannot be directly
added to this framework. However, it is still possible to use
(3) in a non-convex formulation and to obtain tight guaran-
tees via non-convex solvers.
We are thus able to numerically compute the worst-case per-
formance of Newton’s method applied to HM . More pre-
cisely, we show that the guarantee derived in [3, Theorem
1.2.5] is actually tight, and observe that the worst-case func-
tion remains the same when changing the performance cri-
terion to objective function values.

4 Perspectives

Future work includes generalization of these second-order
conditions to n-variable functions, with n≥ 2. Next, a chal-
lenge would be to formulate these n-dimensional conditions
in a tractable way, that will allow to efficiently solve the as-
sociated PEP. This would allow then provide guarantees on
second-order methods independently of a function’s num-
ber of variables, in the spirit of what the PEP framework
achieves for first-order methods.
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