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Goal : Analysis of optimization methods

* Optimization method (e.g. gradient, Newton methods,...)
* Function class F (e.g. convex, smooth, self-concordant,...)
* Problem : min f(x)

X

Question : Worst-case performance of M on instance of F ?

Example: Worst-case performance of on L-smooth convex functions
after N iterations?

L [lxo —x"||?

fon) =" <3581




Constructing a proof of convergence rate

Definition of Step 1: Inequalities
function class F from definition of F

Step 2: Optimal
combination of —

inequalities via PEP

Guarantee on the
performance of

Step 1: Inequalities

F = {smooth
convex functions}

fl@) = fly) +(Vfy),z—y)

Step 2: combination

L
] f(y) < fl@) + VI@)" (v~ @) + Sy — 2|, Y2,y L] of inequalities and

L |lxo = x°|2

o) — S <3N

2 sources of (possible) conservatism on the guarantee:

2) The combination is not optimal,;

1) Inequalities are not necessary and sufficient conditions to the class and allow « undesired functions »;

Optimal combination of exact inequalities leads to exact/tight worst-case analysis




Outline

1. Performance Estimation Problem (PEP) Framework

2. Non-convex PEP for second-order methods

3. New convergence results



Conceptual PEP: maximizing the worst-case performance

Idea: Finding the worst-case performance as an optimization problem

maxf Perf(xN’ f) * Maximize Perf of M among the set of functions f € F
To,r™,
feF * Perf(xy, f) canbe: [|lxy — x*[|, [| VF(xp)l, fn—£
rn = M(xo, f)
2 _ Issue: Untractable since optimization in function
VI[P =0 ssue :

To —x*||? <1
Solution: Discretizing function f
(w.l.0.g. by black-box property of optimization

methods)




From conceptual PEP to tractable PEP (1)

Example: Worst-case performance of gradient method on L-smooth convex functions

~omax flxn) — f(x*)
points x;,x*,function f max =i
points x;,x*.fi.f*,g;,g*
st f L-smooth convex, s.t. Jf L-smooth convex:  f(x;) =fi, Vf(xi) = gi,
— fxr) =, Vfx) = g°
1 S P
X1 =X~ VFx), fir =%~ 70
2 ||X*_X0||2§1:
X = xol[” <1, lg*|2  =o.
2
IVIX)I|” = 0.

Key concept: necessary and sufficient interpolation conditions




. . Step 1: Inequalities
Interpolation conditions from definition of 7

Theorem 1: f is L-smooth convex if and only if for all x,y € R"

F(9) < £(2) + V@) () + 5y~ 2l Ve,
flo) = fy) + (V). —y)

Theorem 2: f is L-smooth convex if and only if for all x,y € R"

) > @) + V@)~ 2) + 5 IV @) - V@), Y,y

Proof/PEP does not use all x,y € R™, only xy, ..., Xy, X*

f(Xf) — fr Vi

~if,and only f,
Vf(xf) =g, Vi

3 L-smooth convex f such that {

1 .
fi > fr + gL(x — Xx¢) + ZHQ; — grll*  V(i,R).



From conceptual PEP to tractable PEP (2)

Example: Worst-case performance of gradient method on L-smooth convex functions

~max fn —f max —f
points x;,x*.fi.f*,g;,g* points x;,x* fi.f*,g;,g* fN f
st df L-smooth convex:  f(x;) =fi, Vf(x;) = g, T 1 9
(i) =fi, Vi) = g; St. i 2 T+ (X = X) + 57119 — Gl
) =0 V)= 0%
1
Xip1 = Xi — [Q:'-. 1
|1X* = Xo|[? <1, Xit1 :Xf—zgie
lg*|I> =0 |1x* — xo||? < 1.
%12
1™ = 0.

Non-convex Quadratically Constrained Quadratic Problem (QCQP)

. T T T
Linearon f; and x; g;, XjXj, g;9;

It can be formulated as convex semidefinite program efficiently solvable !
PEP gives the exact worst-case numerically (which helps to prove it analytically) [Drori, Teboulle 14]

It gives all the answers, but we should ask the relevant questions [Taylor, Hendrickx, Glineur 17]6



Convex formulation of PEP

Convex formulation of PEP when:

‘ Only First-Order methods

: " : T T T
Interpolation conditions are convexin f; and x; g;, X; Xj, 9i 9;

Method analyzed is linear combination of (previous or future) gradients g; and iterates x;.

h
1. Gradient method : ~ %i+1 =% — T V/(@)

I .
Yir1 =i — 7 V(@)
1+ /4602 + 1
2

0, —1
Tit1 = Yi+1 T 9—(,%;+1 - yi)
1+1

2. Fast gradient method :

Oiy1 =

3. Proximal method: x;,1 = proxsy(x;) = x; — Vf(Xi41)
4. Chambolle-Pock method:
Tiy1 = Prox,; (mz — TMTUZ') :
Uit1 = ProX, . (u; +oM 2w — 25)),

[Drori, Teboulle 14]

[Taylor, Hendrickx, Glineur 173a]
[Taylor, Hendrickx, Glineur 17b]
[B, Hendrickx, Glineur 23] v,




No Convex formulation of PEP

Convex formulation of PEP when: ‘ Only First-Order methods

* Method analyzed is linear combination of (previous or future) gradients g; and iterates Xx;.

* Interpolation conditions are convex in f; and xiTgi, xl-ij, gl-ng

1. Newton method: Xi+1 — Xj — [sz(xi)]_lvf(xi) ([de Klerk, Glineur, Taylor 2020] did it for one step)
o KO

2. Finite differences: x;,, = x; — 21—
Xj—Xi

, o ATy, [
3. Adaptive methods: —mm{ L+ Ok M1 grorem—vrae= 1)ll}
Pt =2k — NV f ()
O

] )‘k—l [Malitsky, Mishchenko 2020]

It seems impossible to formulate these PEP in a convex way 3




Non-Convex formulation of PEP

Idea: Tackle the non-convex formulation of PEP [Das Gupta, Van Parys, Ryu 2022]

* Analysis of (almost) any method is possible
 Heavy computational cost (global branch and bound solver)

max fin  =f

points x;,x*.fi.f*,g1,9* * Solve the non-convex (QCQP)

st. fi > ot 910 — %) + 57 1lgi — gl

* We do not avoid « Step 1 », we still need a good
: description of the class considered

Xigr = Xi — Igi:
I15¢" — xo|[2 < 1, * Integer variables and non-quadratic constraints also

¥ possible
lg*|I”  =o.

Idea introduced in [Das Gupta, Van Parys, Ryu 2022] to design methods and used in [Das Gupta, Freund, Sun, Taylor, 2023]
to analyze nonlinear conjugate gradients methods.



Outline

1. Performance Estimation Problem (PEP) Framework

2. Non-convex PEP for second-order methods
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Analysis of Second-order methods via Non-Convex PEP

Example: Analysis of Newton method

max lxy — x*||?
XKERd,gk ERd,hk ERdXd,DKERd

s.t. df € F st f(Xk) = 1, Vf(Xk) = Gk, VQf(Xk) = hy,

Xk+1 = Xk — Pk,

hkpPk = 9k,
1o — x| < R?,
lg*|]* =0,

Or any other second order scheme:

* Cubic Newton method : TM(x)eArgmin[(f’(X),y )5 () (y—x), y—x)+ ﬂuy—xu-*], (2.4)
) 6 [Nesterov, Polyak 2008]

« Damped Newton method: xi4+1 = xx — 1Jrj\/[f)w(m[sz(xk) 171V £ (xp)

* Gradient Regularized Newton method: \i. = \/HHVf(iUk)H
[Mishchenko 2022] ij+1 — .’,Ck — (VQf(LCk) ‘|’ )\kI)—lvf(xk) 10



Interpolation conditions for univariate Hessian Lipschitz functions

We focus on univariate functions for simplicity: Step 1: Inequalities

Dy univariate functions with Lipschitz continuous Hessian.

from definition of F

Definition. f € D), if, and only if

[ (@) = ()] < Mle —y| Vay. (5)

Theorem. [f j € D then, I Not interpolation condition I

1 o M ,
£ y) = fla) = f(@)(y =) = 5" (@) —2)*| < =y — 2" Vay. (52)

Theorem. f € Dy, if, and only if

Interpolation condition

1 , M ,
fly) = fe) = fi@)ly — ) = 5 ()" (y — x)? <4 lv- |3

B (f'(y) — f'(x) = f(2)(y — ) — % (y —2)|y — :};l)z ($3)
2(Mly — x| = (f"(y) = f"(x)))
(My — x| = (f"(y) — f"(2))

_ YITE YV, y.

Curiosity: « (S2) => (S)» is an open question as far as we know

11
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Global convergence rate of Cubic Newton Method

. 1 ‘
Tiy1 = argmin f(x) + f'(2;)(x — 2;) + if”(a:@-_)(a: —x) +

Theorem. (CNM) on Hessian M -Lipschilz univariate functions satisfy

J(x;) = f(igy1) 2 M (|ff($"+l)|)3/2 .

12

M

Moreover, if the function is bounded below by f*., then

, (3(f(wo) = )\
min N ‘f (TJ‘ - M ( 2M N

[Nesterov, Polyak 2008] (in multivariate) i=1

yeunyd

Theorem. (CNM) on Hessian M -Lipschitz univariate functions satisfy

SM [ |f (2ir1)] 22
12 M '

f(xi) — f(wig1) >

Moreover, if the function is bounded below by f*. then

o 1(..
[Rubbens, B, Hendrickx, Glineur 2024] ,:llnln\ ‘f (T’)‘ < 52;’3

2MN

AM (3(f(1”(]) _ f*))?/l%

M

g

—1,.,N

My = min;

|z — ;). (CNM)
Step 1: Inequalities
from definition of F
Step 2: combination
of inequalities and
Iteration of
25 1 ! —Old‘ descent lLemma [NéslS}
——New descent lemma
® PEP with cubic bound
e PEP with exact interpolation conditions
2 = -
1.5
10 ]
0.5 | | L 1 1 | | |
0 1 2 3 4 5 6 7 8

Number of iterations N



Local quadratic convergence rate of Newton Method

Theorem. If
e [ has a M-Lipschitz continuous Hessian,
e Jr* such that Vf(x*) =0, V2f(z*) = ul = 0,
o Milny— % < 2,
then all Newton iterations xj11 = x5 — V2f () "'V f(x1) satisfy
M |l — 2

2 (l — %H;’L’k — ’I*H)

H:I,’-k_l_l - T*H <

[Nesterov 2018]

Observation: PEP numerical results exactly match the bound

Theorem. Theorem above is light and attained by the following univariate cubic by parts function.

Maz* x? ;
L4 i if © <0,
fi(z) = { y °

Mz® x> e
—=c— tps  ifx>0.

[Rubbens, B, Hendrickx, Glineur 2024]

Univariate case is « sufficiently rich » to attain the worst-case performance

13



Optimal step size of fixed damped Newton method

Fixed Damped Newton method : X414 = X, — &

a that optimize the worst-case performance?

f(xp)
fri(xg)

| =—=Regime 1: p; ()
|==Regime 2: ps(a)

[
"| @ PEP results for Damped Newton Method

Performance |x; — x*|
—
=

BA

0 02 04 006

Fig.: M =pu=1and|x,—x*| ==

0.8 1 1.2

Damped coefficient «

1.4

2
3
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Summary (1/2)
State of the art

1. Tight worst-case performance requires Step 1: Inequalities and Step 2: Combination of them
2. PEP combines them automatically and optimally

3. Convex PEP is very efficient and useful to analyze fixed first-order methods (see

4

Non-convex PEP allows to analyze any method but is very costly

Contributions

1. Interpolation conditions for univariate Hessian Lipschitz functions

Theorem. f € Dy, if, and only if

F) = (@) = @)y - ) = 3@y — ) <y - ol
(') = () = )y — ) = Sy — )y 2l
2(Mly — o]~ (7"(y) — ()
(Mly — 2] = (f"(y) = /()

B 96 2 vy

2. Applying non-convex PEP to second-order methods



Summary (2/2)

Contributions

3. Improved Descent lemma of CNM by a factor 5 (for univariate functions)

Theorem. (CNM) on Hessian M -Lipschitz univariate functions satisfy

N M (1 ()2
f(m,-)f(-ml)212< i ) :

4. Exhibit a function attaining the worst local quadratic convergece of Newton method () {%"’fg + /L§
1) —

5. Step size selection of damped Newton method (for univariate functions)

Future perspectives

Exploiting non-convex PEP to analyze new:
1. Second-order schemes: Gradient regularized Newton method, adaptive damped Newton method, etc
2. Classes of functions: self-concordant, etc

3. Optimization methods: zeroth order, adaptive, quasi-Newton methods, etc

16
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