Analysis of Second-Order Methods via non-convex Performance Estimation

EUROPT 2024

Nizar Bousselmi

joint work with Anne Rubbens, Julien Hendrickx, and François Glineur

Goal : Analysis of optimization methods

- Optimization method \mathcal{M} (e.g. gradient, Newton methods,...)
- Function class *F* (e.g. convex, smooth, self-concordant,...)
- Problem : $\min_{x} f(x)$

Question : Worst-case performance of \mathcal{M} on instance of \mathcal{F} ?

Example: Worst-case performance of Gradient Method on *L*-smooth convex functions after *N* iterations?

$$f(x_N) - f^* \le \frac{L}{2} \frac{||x_0 - x^*||^2}{2N + 1}$$

Constructing a proof of convergence rate

2 sources of (possible) conservatism on the guarantee:

- 1) Inequalities are not necessary and sufficient conditions to the class and allow « undesired functions »;
- 2) The **combination** is not optimal;

Optimal combination of **exact** inequalities leads to exact/tight worst-case analysis

1. Performance Estimation Problem (PEP) Framework

2. Non-convex PEP for second-order methods

3. New convergence results

Conceptual PEP: maximizing the worst-case performance

Idea: Finding the worst-case performance as an optimization problem

$$\max_{x_0, x^*, f} \operatorname{Perf}(x_N, f)$$
$$f \in \mathcal{F}$$
$$x_N = \mathcal{M}(x_0, f)$$
$$||\nabla f(x^*)||^2 = 0$$
$$||x_0 - x^*||^2 \le 1$$

- Maximize Perf of \mathcal{M} among the set of functions $f \in F$
- Perf (x_N, f) can be : $||x_N x^*||$, $|| \nabla f(x_N)||$, $f_N f^*$

Issue: Untractable since optimization in function space

Solution: Discretizing function *f* (w.l.o.g. by black-box property of optimization methods)

3

From conceptual PEP to tractable PEP (1)

Example: Worst-case performance of gradient method on *L*-smooth convex functions

Key concept: necessary and sufficient interpolation conditions

Interpolation conditions

Theorem 1: f is L-smooth convex if and only if for all $x, y \in \mathbb{R}^n$

$$egin{aligned} f(y) &\leq f(x) +
abla f(x)^T (y-x) + rac{L}{2} \|y-x\|^2, \ orall x, y. \ f(x) &\geq f(y) + \langle
abla f(y), x-y
angle \end{aligned}$$

Theorem 2: f is L-smooth convex if and only if for all $x, y \in \mathbb{R}^n$ $f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2, \ \forall x, y.$

Proof/PEP does not use all $x, y \in \mathbb{R}^n$, only $x_0, ..., x_N, x^*$

Given $\{(x_1, g_1, f_1), \dots, (x_N, g_N, f_N)\}$, $\exists L$ -smooth convex f such that $\begin{cases} f(x_i) &= f_i, \forall i \\ \nabla f(x_i) &= g_i, \forall i \end{cases}$ if, and only if, $f_i \geq f_k + g_k^T(x_i - x_k) + \frac{1}{2L} ||g_i - g_k||^2 \quad \forall (i, k).$

From conceptual PEP to tractable PEP (2)

Example: Worst-case performance of gradient method on *L*-smooth convex functions

- Non-convex Quadratically Constrained Quadratic Problem (QCQP)
- Linear on f_i and $x_i^T g_i$, $x_i^T x_j$, $g_i^T g_j$
- It can be formulated as convex semidefinite program efficiently solvable !
- PEP gives the exact worst-case numerically (which helps to prove it analytically) [Drori, Teboulle 14]
- It gives all the answers, but we should ask the relevant questions

[Taylor, Hendrickx, Glineur 17]6

Convex formulation of PEP

Convex formulation of PEP when:

Only First-Order methods

- Method analyzed is linear combination of (previous or future) gradients g_i and iterates x_i .
- Interpolation conditions are convex in f_i and $x_i^T g_i$, $x_i^T x_j$, $g_i^T g_j$

 $x_{i+1} = x_i - \frac{h}{L}\nabla f(x_i)$

- 1. Gradient method :
- 2. Fast gradient method :

$$\begin{cases} y_{i+1} = x_i - \frac{1}{L} \nabla f(x_i) \\ \theta_{i+1} = \frac{1 + \sqrt{4\theta_i^2 + 1}}{2} \\ x_{i+1} = y_{i+1} + \frac{\theta_i - 1}{\theta_{i+1}} (y_{i+1} - y_i) \end{cases}$$

OK

See more examples in « PEPit's documentation »

3. Proximal method: $x_{i+1} = prox_{f(.)}(x_i) = x_i - \nabla f(x_{i+1})$

4. Chambolle-Pock method:

$$\begin{cases} x_{i+1} = \operatorname{prox}_{\tau f} \left(x_i - \tau M^T u_i \right), \\ u_{i+1} = \operatorname{prox}_{\sigma g^*} \left(u_i + \sigma M(2x_{i+1} - x_i) \right), \end{cases}$$

[Drori, Teboulle 14] [Taylor, Hendrickx, Glineur 17a] [Taylor, Hendrickx, Glineur 17b] [B, Hendrickx, Glineur 23] 7

No Convex formulation of PEP

Convex formulation of PEP when:

Only First-Order methods

- Method analyzed is linear combination of (previous or future) gradients g_i and iterates x_i.
 Interpolation conditions are convex in f_i and x^T_ig_i, x^T_ix_i, g^T_ig_i
- 1. Newton method: $x_{i+1} = x_i [\nabla^2 f(x_i)]^{-1} \nabla f(x_i)$

([de Klerk, Glineur, Taylor 2020] did it for one step)

- 2. Finite differences : $x_{i+1} = x_i \frac{f_j f_i}{x_j x_i}$
- 3. Adaptive methods: $\lambda_k = \min\{\sqrt{1 + \theta_{k-1}}\lambda_{k-1}, \frac{\|x^k x^{k-1}\|}{2\|\nabla f(x^k) \nabla f(x^{k-1})\|}\}$ $x^{k+1} = x^k - \lambda_k \nabla f(x^k)$

 $heta_k = rac{\lambda_k}{\lambda_{k-1}}$ [Malitsky, Mishchenko 2020]

It seems impossible to formulate these PEP in a convex way

Non-Convex formulation of PEP

Idea: Tackle the non-convex formulation of PEP

[Das Gupta, Van Parys, Ryu 2022]

9

- Analysis of (almost) any method is possible
- Heavy computational cost (global branch and bound solver)

$$\max_{\text{points } x_i, x^*, f_i, f^*, g_i, g^* } f_N - f^*$$
s.t.
$$f_i \ge f_k + g_k^T (x_i - x_k) + \frac{1}{2L} ||g_i - g_k||^2,$$

$$x_{i+1} = x_i - \frac{1}{L} g_i,$$

$$||x^* - x_0||^2 \le 1,$$

$$||g^*||^2 = 0.$$

- Solve the non-convex (QCQP)
- We do not avoid « **Step 1** », we still need a good description of the class considered
- Integer variables and non-quadratic constraints also possible

Idea introduced in [Das Gupta, Van Parys, Ryu 2022] to design methods and used in [Das Gupta, Freund, Sun, Taylor, 2023] to analyze nonlinear conjugate gradients methods.

1. Performance Estimation Problem (PEP) Framework

2. Non-convex PEP for second-order methods

3. New convergence results

Analysis of Second-order methods via Non-Convex PEP

Example: Analysis of Newton method

$$\max_{\substack{x_k \in \mathbb{R}^d, g_k \in \mathbb{R}^d, h_k \in \mathbb{R}^{d \times d}, p_k \in \mathbb{R}^d}} ||x_N - x^*||^2$$
s.t. $\exists f \in \mathcal{F}$ s.t. $f(x_k) = f_k, \nabla f(x_k) = g_k, \nabla^2 f(x_k) = h_k,$
(Newton step) $x_{k+1} = x_k - p_k,$
 $h_k p_k = g_k,$
 $||x_0 - x^*||^2 \le R^2,$
 $||g^*||^2 = 0,$

Or any other second order scheme:

- Cubic Newton method : $T_M(x) \in \operatorname{Arg\,min}_{y} \left[\langle f'(x), y-x \rangle + \frac{1}{2} \langle f''(x)(y-x), y-x \rangle + \frac{M}{6} \|y-x\|^3 \right], \quad (2.4)$ [Nesteroy, Polyak 2008]
- Damped Newton method: $x_{k+1} = x_k \frac{1}{1+M_f \lambda_f(x_k)} [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$
- Gradient Regularized Newton method: $\lambda_k = \sqrt{H \| \nabla f(x^k) \|}$ [Mishchenko 2022] $x^{k+1} = x^k - (\nabla^2 f(x^k) + \lambda_k \mathbf{I})^{-1} \nabla f(x^k)$ 10

Interpolation conditions for univariate Hessian Lipschitz functions

We focus on univariate functions for simplicity:

 \mathcal{D}_M : univariate functions with Lipschitz continuous Hessian.

Definition. $f \in \mathcal{D}_M$ if, and only if $|f''(x) - f''(y)| \le M|x - y| \quad \forall x, y.$ (S)**Theorem.** If $f \in \mathcal{D}_M$ then, Not interpolation condition $|f(y) - f(x) - f'(x)(y - x) - \frac{1}{2}f''(x)(y - x)^2| \le \frac{M}{6}|y - x|^3 \quad \forall x, y.$ (S2)**Theorem.** $f \in \mathcal{D}_M$ if, and only if Interpolation condition $f(y) - f(x) - f'(x)(y - x) - \frac{1}{2}f(x)''(y - x)^2 \le \frac{M}{6}|y - x|^3$ $-\frac{(f'(y) - f'(x) - f''(x)(y - x) - \frac{M}{2}(y - x)|y - x|)^2}{2(M|y - x| - (f''(y) - f''(x)))}$ (S3) $-\frac{(M|y-x| - (f''(y) - f''(x))^3}{96M^2} \quad \forall x, y.$

Curiosity: « (S2) => (S)» is an open question as far as we know

Step 1: Inequalities from definition of \mathcal{F}

1. Performance Estimation Problem (PEP) Framework

2. Non-convex PEP for second-order methods

3. New convergence results

Global convergence rate of Cubic Newton Method

$$x_{i+1} = \arg \min_{x} f(x) + f'(x_i)(x - x_i) + \frac{1}{2}f''(x_i)(x - x_i)^2 + \frac{M}{6}|x - x_i|^3.$$
(CNM)
Theorem. (CNM) on Hessian M-Lipschitz univariate functions satisfy

$$f(x_i) - f(x_{i+1}) \ge \frac{M}{12} \left(\frac{|f'(x_{i+1})|}{M}\right)^{3/2}.$$
Moreover, if the function is bounded below by f*, then
[Nesterov, Polyak 2008] (in multivariate)
$$\min_{i=1,...,N} |f'(x_i)| \le 4M \left(\frac{3(f(x_0) - f^*)}{2MN}\right)^{2/3}.$$
Theorem. (CNM) on Hessian M-Lipschitz univariate functions satisfy

$$f(x_i) - f(x_{i+1}) \ge \frac{5M}{12} \left(\frac{|f'(x_{i+1})|}{M}\right)^{3/2}.$$
Moreover, if the function is bounded below by f*, then

[Rubbens, B, Hendrickx, Glineur 2024]
$$\min_{i=1,...,N} |f'(x_i)| \le \frac{4M}{5^{2/3}} \left(\frac{3(f(x_0) - f^*)}{2MN}\right)^{2/3} + \frac{1}{5^{2/3}} \left(\frac{3(f(x_0) -$$

Local quadratic convergence rate of Newton Method

Theorem. If

- f has a M-Lipschitz continuous Hessian,
- $\exists x^* \text{ such that } \nabla f(x^*) = 0, \ \nabla^2 f(x^*) = \mu I \succ 0,$
- $\frac{M}{\mu} ||x_0 x^*|| \le \frac{2}{3},$

then all Newton iterations $x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$ satisfy

$$|x_{k+1} - x^*|| \le \frac{\frac{M}{\mu} ||x_k - x^*||^2}{2\left(1 - \frac{M}{\mu} ||x_k - x^*||\right)}$$

[Nesterov 2018]

Observation: PEP numerical results exactly match the bound

Theorem. Theorem above is tight and attained by the following univariate cubic by parts function. $f_1(x) = \begin{cases} \frac{Mx^3}{6} + \mu \frac{x^2}{2} & \text{if } x \leq 0, \\ -\frac{Mx^3}{6} + \mu \frac{x^2}{2} & \text{if } x > 0. \end{cases}$ [Rubbens, B, Hendrickx, Glineur 2024]

Univariate case is « sufficiently rich » to attain the worst-case performance

Optimal step size of fixed damped Newton method

Fixed Damped Newton method : $x_{k+1} = x_k - \alpha \frac{f'(x_k)}{f''(x_k)}$

 α that optimize the worst-case performance?

Summary (1/2)

State of the art

- 1. Tight worst-case performance requires Step 1: Inequalities and Step 2: Combination of them
- 2. PEP combines them automatically and optimally
- 3. Convex PEP is very efficient and useful to analyze fixed first-order methods (see PEPit's documentation)
- 4. Non-convex PEP allows to analyze any method but is very costly

Contributions

1. Interpolation conditions for univariate Hessian Lipschitz functions

Theorem. $f \in \mathcal{D}_M$ if, and only if $f(y) - f(x) - f'(x)(y - x) - \frac{1}{2}f(x)''(y - x)^2 \leq \frac{M}{6}|y - x|^3 - \frac{(f'(y) - f'(x) - f''(x)(y - x) - \frac{M}{2}(y - x)|y - x|)^2}{2(M|y - x| - (f''(y) - f''(x)))} - \frac{(M|y - x| - (f''(y) - f''(x))^3}{96M^2} \quad \forall x, y.$

2. Applying non-convex PEP to second-order methods

Summary (2/2)

Contributions

3. Improved Descent lemma of CNM by a factor 5 (for univariate functions)

Theorem. (CNM) on Hessian M-Lipschitz univariate functions satisfy

$$f(x_i) - f(x_{i+1}) \ge \frac{5M}{12} \left(\frac{|f'(x_{i+1})|}{M}\right)^{3/2}.$$

- 4. Exhibit a function attaining the worst local quadratic convergece of Newton method
- 5. Step size selection of damped Newton method (for univariate functions)

Future perspectives

Exploiting **non-convex PEP** to analyze new:

- 1. Second-order schemes: Gradient regularized Newton method, adaptive damped Newton method, etc
- 2. Classes of functions: self-concordant, etc
- 3. Optimization methods: zeroth order, adaptive, quasi-Newton methods, etc

$$f_1(x) = \begin{cases} \frac{Mx^3}{6} + \mu \frac{x^2}{2} & \text{if } x \le 0, \\ -\frac{Mx^3}{6} + \mu \frac{x^2}{2} & \text{if } x > 0. \end{cases}$$