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Abstract: We are interested in determining the worst performance exhibited by a given first-
order optimization method on the class of quadratic functions. Since its introduction, the
Performance Estimation Problem (PEP) methodology has allowed the computation of the
exact worst-case performance of first-order optimization methods on several functions classes,
including smooth convex, strongly convex or nonconvex functions.
In this work, we extend the PEP framework to the class of quadratic functions, and apply it
to analyze the difference of performance of the gradient method between convex quadratic and
general smooth convex functions.
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1. INTRODUCTION

The Performance Estimation Problem (PEP) methodol-
ogy (introduced by Drori and Teboulle (2014)) allows to
compute the exact worst-case performance of a first-order
optimization method on a given class of functions. More
precisely, given a method and a performance criterion
(lower is better), a PEP is an optimization problem that
maximizes this criterion among all possible functions be-
longing to some class. Thus, it provides the worst possible
behavior of the method on the class of functions.

It has been shown in Taylor et al. (2017) that a PEP can
be reformulated as a convex semidefinite program for a
wide range of function classes C. This provided several
tight results on the performance of first-order methods. In
particular, the worst-case behavior of the Gradient Method
(GM) on the class Fµ,L of L-smooth µ-strongly convex
functions was exhaustively covered.

In this work, we extend the PEP framework to function
classes defined by matrices. This typically allows to study
the worst-case performance of first-order methods on the
class Qµ,L of homogeneous quadratic functions of the form
f(x) = 1

2x
TQx with µI ⪯ Q ⪯ LI for given parameters

µ and L (0 ≤ µ ≤ L). Another type of classes newly
analyzable through our extension of the PEP are function
classes C1 and C2 of the form g(Ax) and h(x) + g(Ax).
These three classes turn out to be included in Fµ,L if we
define the smoothness and strong convexity parameters of
A, g and h in a proper way. Since the worst-case functions
of Fµ,L for (GM), found in Taylor et al. (2017), are
sometimes but not always quadratic or of the form g(Ax),
we will quantify the performance gap between the general
class Fµ,L and the classes Qµ,L, C1, C2 or other function
classes involving matrices that we can now analyze through
the PEP framework.
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Theorems are stated without proofs in this extended
abstract, they will be appear in a forthcoming paper.

2. PEP FORMULATION

Typically, a PEP can be formulated as follows. Given the
class of functions C, the optimization method M perform-
ing N iterations, the initial distance R and the classical
performance criterion f(xN ) − f∗ (objective function ac-
curacy after N iterations), the PEP is

max
x0,...,xN ,f

f(xN )− f∗

s.t. f ∈ C,
xk generated by applying M to f from x0,

||x0 − x∗|| ≤ R.
(PEP)

We can study any method M that computes each iterate
as a linear combination of the initial point x0 and the
gradients of the previous iterations, i.e.

xk = x0 −
k−1∑
i=0

hk,i∇f(xi).

Coefficients hk,i entirely describe the method M. For
example, the gradient method with constant step size 1

L
started from x0:

For i = 0 : N − 1

xi+1 = xi −
1

L
∇f(xi) (GM)

= x0 −
1

L

k−1∑
i=0

∇f(xi).

is described with{
hk,i =

1

L
if i < k,

hk,i = 0 otherwise.



The constraint f ∈ C must be expressed in an explicit way
with interpolation conditions in order to have a tractable
problem.

Definition 1. Given a set of triplet {(xi, gi, fi)}i∈I with
I some set of indices, interpolation conditions for the class
of functions C are such that there exists a function f ∈ C
with

f(xi) = fi ∀i ∈ I,

∇f(xi) = gi ∀i ∈ I,

if and only if the interpolation conditions are satisfied.

When those conditions are available, the PEP can be
rewritten as the following finite-dimensional problem

max
x0,...,xN ,x∗,g0,...,gN ,g∗,f0,...,fN ,f∗

fN − f∗

s.t. xk = x0 −
k−1∑
i=0

hk,i∇gi,

||x0 − x∗||2 ≤ R2,

∥g∗∥2 = 0,

{(xi, gi, fi)}i∈I={0,1,...,N,∗} are interpolable

by some function f ∈ C.

(PEP)

Finally, it was shown in Taylor et al. (2017) that this
problem becomes a convex semidefinite problem provided
that the iterates xi and their gradients gi are represented
as elements of the Gram matrix G = PTP , with

P =
(
x1 · · · xN g1 · · · gN

)
∈ Rd×2N .

3. PROBLEM STATEMENT

The key step and our main contribution is to obtain
interpolation conditions for the class Qµ,L of quadratic
functions. Indeed, we want to solve the following PEP on
the class Qµ,L,

max
x0,...,xN ,f

f(xN )− f∗

s.t. f ∈ Qµ,L,

xk generated by applying M to f from x0,

||x0 − x∗|| ≤ R.
(PEP-Q)

where we need an explicit equivalent reformulation of the
condition f ∈ Qµ,L in order to solve (PEP-Q).

As mentioned above, (PEP) can be formulated under the
form of a semidefinite program (see Taylor et al. (2017))
involving only the Gram matrix G of the iterates xi and
their gradients gi and the values fi of the function at these
iterates.

In order to work in the class Qµ,L, we must consider the
set of Gram matrices associated to a quadratic function.
Note that in that case we have

∇f(x) = Qx ∀x (1)

Definition 2. A symmetric matrix G ∈ S2N is a (µ,L,N)-
quadratic-Gram matrix if and only if there exist a dimen-
sion d ∈ N, a symmetric matrix Q ∈ Sd with µI ⪯ Q ⪯ LI
and a sequence xi ∈ Rd for i = 1, . . . , N such that
G = PTP with

P =
(
x1 · · · xN

g1︷︸︸︷
Qx1 · · ·

gN︷ ︸︸ ︷
QxN

)
∈ Rd×2N .

The set of all (µ,L,N)-quadratic-Gram matrices is de-
noted Gµ,L,N . It can be shown that any conic combination
of (µ,L,N)-quadratic-Gram matrices is also a (µ,L,N)-
quadratic-Gram matrix, hence the set Gµ,L,N is a convex
cone.

In the following, we provide an explicit convex description
of this set in order to be able to include those constraints
to (PEP-Q). In other words, we show a convex formulation
of the condition f ∈ Qµ,L.

4. INTERPOLATION CONDITIONS

Several observations can be made about the form of the
(µ,L,N)-quadratic-Gram matrices. Indeed, if a matrix G
belongs to Gµ,L,N , then, by diagonalization of Q, it can be
written under the form

G =

(
XTX XTQX
XTQX XTQ2X

)
=

(
Y TY Y TDY
Y TDY Y TD2Y

)
=

d∑
k=1

(
uku

T
k λkuku

T
k

λkuku
T
k λ2

kuku
T
k

)
(2)

where X = (x1 · · ·xN ) ∈ Rd×N , Q = V DV T is the
eigenvalue decomposition of Q, Y = V TX ∈ Rd×N ,

D = diag(λ1, . . . , λd), λk ∈ [µ,L] and uk =

y1,k
...

yN,k

.

Vector uk contains the k-th component of all vectors yi.
Expression (2) informs us that each block XTX, XTQX,
XTQ2X can be expressed as the sum of d positive definite
rank-1 matrices uku

T
k , λkuku

T
k and λ2

kuku
T
k .

By characterizing the Gram matrices exhibiting this struc-
ture, we are able to obtain the following explicit descrip-
tion of (µ,L,N)-quadratic-Gram matrices.

Theorem 2. Given a symmetric matrix

G =

(
A B
BT C

)
∈ S2N

with A,C ∈ SN and B ∈ RN×N , the conditions

G ⪰0 (C1)

B =BT (C2)

B ⪰ µL

µ+ L
A+

1

µ+ L
C (C3)

are necessary and sufficient for

G ∈ Gµ,L,N .

Observe that the quadratic interpolation conditions (C1),
(C2) and (C3) of Theorem 2 do not involve the function
values fi. Actually, the variables fi are directly encoded
in the diagonal of the block matrix B = XTQX. Indeed,
thanks to (1), we have

f(x) =
1

2
xTQx =

1

2
xT∇f(x)
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and the iterates xi, gi and fi are linked through

fi =
1

2
xT
i gi.

Since B contains the scalar products xT
i gj , whenever we

need the value of fi, we just use

fi =
1

2
Bii.

It is now possible to replace the condition f ∈ Qµ,L

in (PEP-Q) by the interpolation conditions obtained in
Theorem 2, which allows to reformulate the whole problem
as a tractable optimization problem. This problem is
a convex semidefinite program involving linear matrix
constraint and can be comfortably written and solved with
the Python library PEPit (see Goujaud et al. (2022)).
Note that as we only consider homogeneous quadratic
functions in the class Qµ,L, we can assume implicitly
that x∗ = 0 and f∗ = f(x∗) = 0, which simplifies the
formulation.

Finally, as mentioned in the introduction, we actually
obtained more general interpolation conditions that the
ones of the class of quadratic functions. Indeed, Definition
2 and Theorem 2 provide interpolation conditions for any
two sequences xi and yi linked by a matrix, i.e. yi =
Qxi ∀i. For example, if we apply a first-order method
to the class of functions of the form f(x) = g(Qx), then
we will need to compute the gradient of f , i.e.

∇f(x) = Q∇g(Qx). (3)

In order to describe this class with interpolation condi-
tions, we need to force xi and yi = Qxi to be linked by a
matrix as well as the ui = ∇g(Qxi) and vi = Q∇g(Qxi).
Thanks to Theorem 2, we are able to do it and, thus, to
analyze the worst-case performance of this class through
PEP.

5. RELATION BETWEEN INTERPOLATION
CONDITIONS OF Fµ,L AND Qµ,L

The class of quadratic functions Qµ,L is included in Fµ,L,
therefore, from the interpolation conditions of Qµ,L, it
must be possible to obtain the interpolation conditions
of Fµ,L.

In Taylor et al. (2017), the following interpolation con-
ditions for the class Fµ,L have been obtained ∀i, j =
0, 1, . . . , N

fi − fj − gTj (xi − xj) ≥
1

2(1− µ/L)
(4)(

1

L
(gTi gi + gTj gj − 2gTi gj)

+ µ(xT
i xi + xT

j xj − 2xT
i xj)

− 2
µ

L
(gTj xj − gTj xi − gTi xj + gTi xi)

)
.

In the quadratic case, if we define a matrix M = − µL
µ+LA+

B − 1
µ+LC, the condition (C3) can be written as the

positive semidefiniteness of matrix M which is equivalent
to

M ⪰ 0 ⇔ zTMz ≥ 0 ∀z ∈ RN

⇔
N∑

k=1

N∑
l=1

zkzlMkl ≥ 0 ∀z ∈ RN . (5)

Choosing zi = 1, zj = −1 and all the other components
of z equal to zero in (5) and then using fi =

1
2x

T
i gi yields

the interpolation conditions (4) of the class Fµ,L.

Therefore, the finite set of interpolation conditions of
Fµ,L is explicitly seen as a consequence of the set of
interpolation conditions of Qµ,L.

6. ANALYSIS OF THE GRADIENT METHOD

In Taylor et al. (2017), the worst-case performance and
the functions reaching it for the class Fµ,L have been
completely analyzed thanks to the PEP methodology. We
would like to compare these results with the behavior
of (GM) on the class Qµ,L and other classes involving
matrices.

In the convex case µ = 0, the worst-case performance on
the class F0,L is (from Taylor et al. (2017))

f(xN )− f∗ ≤ LR2

4N + 2
. (6)

Note that this worst-case performance is reached by a
Huber function, which is not quadratic and does not
belong to Q0,L.

Thanks to our extension of PEP for the class Qµ,L, we
can solve (PEP) for the class Q0,L. It yields the following
numerical results. Fig. 1 is the worst-case performance of
(GM) on F0,L (red) and Q0,L (blue) for each number of
iterations N .

Fig. 1. Worst-case performance of (GM) on Qµ,L (blue
dots) obtained by PEP and on Fµ,L (red dots).

It turns out that it is possible to identify the worst-case
rate of performance of (GM) on Q0,L, which is equal to
the following analytical expression

f(xN )− f∗ ≤ LR2

4N + 2

(
2N

2N + 1

)2N

(7)

and this worst performance is achieved by the quadratic
function

f(x) =
Lx2

4N + 2
.

We observe that the numerical results of PEP (blue dots)
in Fig. 1 exactly matches the rate (7) (blue line).



Interestingly, the difference between the worst-case perfor-

mance of (GM) on F0,L and Q0,L is the factor

(
2N

2N+1

)2N

.

Moreover, this factor exhibits two particular properties

lim
N→∞

(
2N

2N + 1

)2N

=
1

e
,(

2N

2N + 1

)2N

≥ 1

e
∀N ∈ N.

Therefore, we can say that, for any numberN of iterations,
the worst-case performance of (GM) with constant step
size 1

L on F0,L is always lower than the performance on
Q0,L multiplied by a factor e.

To be complete, we must now mention that the literature
already provides a methodology to analyze the worst-
case performance of a first-order method on the class of
quadratic functions with eigenvalues between µ and L (see
for example Flanders and Shortley (1950); Nemirovsky and
Polyak (1984); d’Aspremont et al. (2021)) and, thus, to
obtain the rate (7). Indeed, given a quadratic function
1
2x

TQx, an initial point x0 and a method M, the max-
imization of the last iterate xN can be expressed as the
maximization of a polynomial evaluated at the elements of
the spectrum of Q, where the coefficients of the polynomial
only depend on the method M. Therefore this leads to the
maximization of some explicit polynomial whose degree
grows with the number of iterations. It can be shown that
such a reasoning will provide the same rate (7).

However, as explained earlier, we are now also able to ana-
lyze the class of functions of the form g(Ax), which cannot
be tackled by the simple polynomial approach described in
the previous paragraph. We observe a difference of worst-
case performance of (GM) between the general class F0,L

and the class C1 of functions of the form f(x) = g(Ax)
where f is still L-smooth convex. Fig. 2 is the worst-
case performance of (GM) on F0,L (red) and C1 (blue)
for each number of iterations N . Note again that such

Fig. 2. Worst-case performance of (GM) on C1 (blue dots)
obtained by PEP.

results cannot be obtained by the abovementioned spectral
analysis, and that it is possible with PEP to study even
more complex functions classes such as h(x) + g(Ax).

7. CONCLUSION

PEP has been shown to be a powerful tool for the anal-
ysis of the worst-case behavior of first-order optimization
methods on a given class of functions. We showed how to

extend PEP to the class of quadratic functions, thanks to
Theorem 2, using a list of explicit convex constraints on
the Gram matrix G. Moreover, we are able to implement
and solve the PEP thanks to the Python library PEPit.

Our numerical experiments exactly match the analytical
expression of the worst-case performance of the gradient
method on convex quadratic functions Q0,L and we com-
pared it to the worst-case performance on smooth strongly
convex functions F0,L. An interesting direction for future
research would be to obtain a bound on the performance
gap of any method between the general class Fµ,L and the
class Qµ,L.

Moreover, in addition to the class of quadratic functions,
we are now able to formulate explicit interpolation con-
ditions for any class of functions involving matrices and
to analyze them through PEP. This include for exam-
ple the simple class of functions f(x) = g(Ax) but also
more complicated classes of functions as f(x) = h(x) +
g(Ax). Although the worst-case performance on the class
of quadratic methods could already be obtained via the
spectrum analysis approach, our extension of PEP appears
to the best of our knowledge to be the first tool able to
analyze classes of function of the forms f(x) = g(Ax) or
f(x) = h(x) + g(Ax).
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