PERFORMANCE ESTIMATION OF FIRST-ORDER OPTIMIZATION METHODS ON CONVEX FUNCTIONS COMPOSED WITH LINEAR MAPPINGS

Nizar Bousselmi
François Glineur and Julien Hendrickx

Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) Université catholique de Louvain (UCLouvain)

Thesis supported by a FRIA grant

WORST-CASE PERFORMANCE OF A METHOD ON A CLASS OF FUNCTIONS

Common question in optimization :

Worst-case performance of an optimization method $\boldsymbol{\mathcal { M }}$ on

$$
\min _{x} f(x)
$$

where $f \in \mathcal{F}$ has some properties (smoothness, convexity,...) ?

WORST-CASE PERFORMANCE OF A METHOD ON A CLASS OF FUNCTIONS

Common question in optimization :

Worst-case performance of an optimization method \mathcal{M} on

$$
\min _{x} f(x)
$$

where $f \in \mathcal{F}$ has some properties (smoothness, convexity,...) ?

Example :

Worst-case performance of $\overbrace{\text { gradient method on }} \overbrace{\text {-smooth convex functions }}$ after N iterations?

$$
\overbrace{f\left(x_{N}\right)-f^{*}}^{\text {performance }} \leq \frac{L}{2} \frac{1}{2 N+1}
$$

Performance Estimation Problem (PEP)

Theoretical and practical framework to analyze performance of optimization methods on problem classes.

- Performance of first-order methods...Drori \& Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

Performance Estimation Problem (PEP)

Theoretical and practical framework to analyze performance of optimization methods on problem classes.

- Performance of first-order methods...Drori \& Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

Performance Estimation Problem (PEP)

Theoretical and practical framework to analyze performance of optimization methods on problem classes.

- Performance of first-order methods...Drori \& Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

Example:

PEP IS WELL DEVELOPED

Large number of methods and function classes already analyzed through PEP

- Smooth convex and smooth strongly convex functions; [Taylor, Hendrickx, Glineur]
- Constrained optimization (projected gradient); [Taylor, Glineur, Hendrickx]
- Non-smooth optimization (subgradient, proximal operators); [Taylor, Glineur, Hendrickx]
- Non-convex and hypo-convex functions [Rotaru, Glineur, Patrinos), [Abbaszadehpeivasti, de Klerk, Zamani]
- Stochastic optimization;
- Decentralized optimization; [colla, Hendrickx]
- Coordinate descent method;
- etc.

PEP IS WELL DEVELOPED

Large number of methods and function classes already analyzed through PEP

- Smooth convex and smooth strongly convex functions; [Taylor, Hendrickx, Glineur]
- Constrained optimization (projected gradient); [Taylor, Glineur, Hendrickx]
- Non-smooth optimization (subgradient, proximal operators); [Taylor, Glineur, Hendrickx]
- Non-convex and hypo-convex functions [Rotaru, Glineur, Patrinos), [Abbaszadehpeivasti, de Klerk, Zamani]
- Stochastic optimization;
- Decentralized optimization; [colla, Hendrickx]
- Coordinate descent method;
- etc.
- Our contribution: Convex functions composed with linear mappings.

Outline

Performance Estimation Problem

Interpolation conditions for linear mappings

Exploitation of new tool

INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
 OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

- N steps of gradient method $x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)$
- L-smooth convex functions f

PEP

$$
\begin{array}{ll}
\max _{\text {points }} x_{k}, x^{*}, \text { function } f & f\left(x_{N}\right)-f\left(x^{*}\right) \\
\text { s.t. } & f L \text {-smooth convex, } \\
& x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right), \\
& \left\|x^{*}-x_{0}\right\| \leq 1, \\
& \nabla f\left(x^{*}\right)=0 .
\end{array}
$$

INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
 OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

- N steps of gradient method $x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)$
- L-smooth convex functions f

PEP

$$
\begin{array}{ll}
\max _{\text {points } x_{k}, x^{*}, \text { function } f} & f\left(x_{N}\right)-f\left(x^{*}\right) \\
\text { s.t. } & f L \text {-smooth convex, } \\
& x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right), \\
& \left\|x^{*}-x_{0}\right\| \leq 1, \\
& \nabla f\left(x^{*}\right)=0 .
\end{array}
$$

INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
 OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

- N steps of gradient method $x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)$
- L-smooth convex functions f

PEP

$$
\begin{array}{ll}
\max _{\text {points }} x_{k}, x^{*}, \text { function } f & f\left(x_{N}\right)-f\left(x^{*}\right) \\
\text { s.t. } & f L \text {-smooth convex, } \\
& x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right), \\
& \left\|x^{*}-x_{0}\right\| \leq 1, \\
& \nabla f\left(x^{*}\right)=0 .
\end{array}
$$

INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
 OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

- N steps of gradient method $x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)$
- L-smooth convex functions f

PEP

$$
\begin{array}{ll}
\max _{\text {points }}^{x_{k}, x^{*}, \text { function } f} & f\left(x_{N}\right)-f\left(x^{*}\right) \\
\text { s.t. } & f L \text {-smooth convex, } \\
& x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right), \\
& \left\|x^{*}-x_{0}\right\| \leq 1, \\
& \nabla f\left(x^{*}\right)=0 .
\end{array}
$$

INPUT = OPTIMIZATION METHOD + PROBLEM CLASS

OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

- N steps of gradient method $x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right)$
- L-smooth convex functions f

PEP solved

Output:

- Worst performance : $f\left(x_{N}\right)-f^{*} \leq \frac{L}{2} \frac{1}{2 N+1}$ for any N;
- Worst function for $N=3$ and $L=1$:

PEP AS FINITE-DIMENSIONAL PROBLEM

f infinite-dimensional but only access to $x_{k}, f\left(x_{k}\right), \nabla f\left(x_{k}\right)$... black-box property!

PEP

$$
\begin{array}{ll}
\max _{\text {points } x_{k}, x^{*}, \text { function } f} & f\left(x_{N}\right)-f\left(x^{*}\right) \\
\text { s.t. } & f L \text {-smooth convex, } \\
& \\
& x_{k+1}=x_{k}-\frac{1}{L} \nabla f\left(x_{k}\right), \\
& \left\|x^{*}-x_{0}\right\| \leq 1, \\
& \nabla f\left(x^{*}\right)=0 .
\end{array}
$$

PEP AS FINITE-DIMENSIONAL PROBLEM

f infinite-dimensional but only access to $x_{k}, f\left(x_{k}\right), \nabla f\left(x_{k}\right)$... black-box property!

PEP

$$
\begin{array}{ll}
\max _{\text {points } x_{k}, x^{*}, f_{k}, f^{*}, g_{k}, g^{*}} & f_{N} \quad-f^{*} \\
\text { s.t. } & \exists f L \text {-smooth convex: } \\
& f\left(x_{k}\right)=f_{k}, \quad \nabla f\left(x_{k}\right)=g_{k}, \\
& f\left(x^{*}\right)=f^{*}, \quad \nabla f\left(x^{*}\right)=g^{*}, \\
& x_{k+1}=x_{k}-\frac{1}{L} g_{k}, \\
& \left\|x^{*}-x_{0}\right\| \leq 1, \\
& g^{*} \quad=0 .
\end{array}
$$

PEP AS FINITE-DIMENSIONAL PROBLEM

f infinite-dimensional but only access to $x_{k}, f\left(x_{k}\right), \nabla f\left(x_{k}\right)$... black-box property!

PEP

$$
\begin{array}{lll}
\max _{\text {points } x_{k}, x^{*}, f_{k}, f^{*}, g_{k}, g^{*}} & f_{N} \quad-f^{*} & \\
\text { s.t. } & \exists f L \text {-smooth convex: } & f\left(x_{k}\right)=f_{k}, \\
& & f\left(x^{*}\right)=f^{*}, \\
& \left.\nabla f\left(x_{k}\right)=g_{k}\right)=g^{*}, \\
& x_{k+1}=x_{k}-\frac{1}{L} g_{k}, & \\
& \left\|x^{*}-x_{0}\right\| \leq 1, & \\
& g^{*} \quad=0 . &
\end{array}
$$

Interpolation condition to reformulate.

PEP AS FINITE-DIMENSIONAL PROBLEM

f infinite-dimensional but only access to $x_{k}, f\left(x_{k}\right), \nabla f\left(x_{k}\right)$... black-box property!

PEP

$$
\begin{array}{ll}
\max _{\text {points } x_{k}, x^{*}, f_{k}, f^{*}, g_{k}, g^{*}} & f_{N} \quad-f^{*} \\
\text { s.t. } & f_{j} \geq f_{k}+g_{k}^{\top}\left(x_{j}-x_{k}\right)+\frac{1}{2 L}\left\|g_{j}-g_{k}\right\|^{2}, \\
& x_{k+1}=x_{k}-\frac{1}{L} g_{k}, \\
& \left\|x^{*}-x_{0}\right\| \leq 1, \\
& g^{*} \quad=0 .
\end{array}
$$

Interpolation condition to reformulate.

Can be reformulated as convex semidefinite problem, efficiently solvable!

Currently formulable PEP

Interpolation conditions for L-smooth convex functions

Given x_{k}, g_{k} and $f_{k} \quad \forall k=0, \ldots, N$,
$\exists L$-smooth convex f such that $\left\{\begin{array}{ll}f\left(x_{k}\right) & =f_{k} \forall k=0, \ldots, N, \\ \nabla f\left(x_{k}\right) & =g_{k} \forall k=0, \ldots, N,\end{array}\right.$ if and only if

$$
f_{j} \geq f_{k}+g_{k}^{\top}\left(x_{j}-x_{k}\right)+\frac{1}{2 L}\left\|g_{j}-g_{k}\right\|^{2} \quad \forall j, k=0, \ldots, N .
$$

Currently formulable PEP

Interpolation conditions for L-smooth convex functions

Given x_{k}, g_{k} and $f_{k} \quad \forall k=0, \ldots, N$,
$\exists L$-smooth convex f such that $\left\{\begin{array}{ll}f\left(x_{k}\right) & =f_{k} \forall k=0, \ldots, N, \\ \nabla f\left(x_{k}\right) & =g_{k} \forall k=0, \ldots, N,\end{array}\right.$ if and only if

$$
f_{j} \geq f_{k}+g_{k}^{\top}\left(x_{j}-x_{k}\right)+\frac{1}{2 L}\left\|g_{j}-g_{k}\right\|^{2} \quad \forall j, k=0, \ldots, N .
$$

Remark: Interpolation conditions (and PEP formulation) exist for numerous function classes : non-smooth, L-smooth, convex, $\boldsymbol{\mu}$-strongly convex,etc

EXPLOITATION OF PEP

Accuracy after 10 steps of gradient method on L-smooth convex functions for varying step size $\frac{h}{L}$

Remarks :

- Theory [Nesterov98] suggests a step size of $\frac{1}{L}$ while PEP recommends $\approx \frac{1.834}{L}$ to optimize the worst-case;
- PEP provides tight results;
- PEP guarantees a performance ≈ 10 times better than theory.

Outline

Performance Estimation Problem

Interpolation conditions for linear mappings

Exploitation of new tool

EXTENSION OF PEP : FUNCTIONS USING LINEAR MAPPING

Goal : Analyze worst performance of methods on $\min _{x} f(x)$ for f using linear mapping.

EXTENSION OF PEP : FUNCTIONS USING LINEAR MAPPING

Goal : Analyze worst performance of methods on $\min _{x} f(x)$ for f using linear mapping.

Function class
$f(x)=g(A x)$
$f(x)=g(A x)=\frac{1}{2} x^{\top} Q X$ (quadratic functions)
$f(x)=h(x)+g(A x)$

Hypothesis
g smooth (strongly) convex
$g(y)=\frac{1}{2}\|y\|^{2}$ and $Q=A^{\top} A$
h, g smooth (strongly) convex

EXTENSION OF PEP : FUNCTIONS USING LINEAR MAPPING

Goal : Analyze worst performance of methods on $\min _{x} f(x)$ for f using linear mapping.

Function class

$$
\begin{aligned}
& f(x)=g(A x) \\
& f(x)=g(A x)=\frac{1}{2} x^{\top} Q X(\text { quadratic functions })
\end{aligned}
$$

Hypothesis
g smooth (strongly) convex
$g(y)=\frac{1}{2}\|y\|^{2}$ and $Q=A^{\top} A$

$$
f(x)=h(x)+g(A x) \quad h, g \text { smooth (strongly) convex }
$$

EXTENSION OF PEP : FUNCTIONS USING LINEAR MAPPING

Goal : Analyze worst performance of methods on $\min _{x} f(x)$ for f using linear mapping.

Function class
$f(x)=g(A x)$
$f(x)=g(A x)=\frac{1}{2} x^{\top} Q X$ (quadratic functions)
$f(x)=h(x)+g(A x)$

Hypothesis
g smooth (strongly) convex
$g(y)=\frac{1}{2}\|y\|^{2}$ and $Q=A^{\top} A$
h, g smooth (strongly) convex

EXTENSION OF PEP : FUNCTIONS USING LINEAR MAPPING

Goal : Analyze worst performance of methods on $\min _{x} f(x)$ for f using linear mapping.

Function class
$f(x)=g(A x)$

Gradient method on $f(x)=g(A x)$ with $A=A^{T}: \quad x_{k+1}=x_{k}-\frac{h}{L} A \nabla g\left(A x_{k}\right)$

EXTENSION OF PEP : FUNCTIONS USING LINEAR MAPPING

Goal : Analyze worst performance of methods on $\min _{x} f(x)$ for f using linear mapping.

Function class

$$
f(x)=g(A x)
$$

Hypothesis
g smooth (strongly) convex

Gradient method on $f(x)=g(A x)$ with $A=A^{T}: \quad x_{k+1}=x_{k}-\frac{h}{L} A \nabla g\left(A x_{k}\right)$
or equivalently, decomposing operations for each step

$$
\begin{cases}y_{k} & =A x_{k} \\ u_{k} & =\nabla g\left(y_{k}\right) \\ v_{k} & =A u_{k} \\ x_{k+1} & =x_{k}-\frac{h}{L} v_{k}\end{cases}
$$

EXTENSION OF PEP : FUNCTIONS USING LINEAR MAPPING

Goal : Analyze worst performance of methods on $\min _{x} f(x)$ for f using linear mapping.

Function class

$$
f(x)=g(A x)
$$

g smooth (strongly) convex

Gradient method on $f(x)=g(A x)$ with $A=A^{T}: \quad x_{k+1}=x_{k}-\frac{h}{L} A \nabla g\left(A x_{k}\right)$
or equivalently, decomposing operations for each step

$$
\left\{\begin{array}{lll}
y_{k} & =A x_{k} & \text { New interpolation conditions } \\
u_{k} & =\nabla g\left(y_{k}\right) & \text { Standard interpolation conditions } \\
v_{k} & =A u_{k} & \text { New interpolation conditions } \\
x_{k+1} & =x_{k}-\frac{h}{L} v_{k} & \text { Standard }
\end{array}\right.
$$

Interpolation conditions for symmetric matrices

Let $N \in \mathbb{N}, S=\{0, \ldots, N\}, X=\left(x_{0} \cdots x_{N}\right), Y=\left(y_{0} \cdots y_{N}\right)$ and $L \in \mathbb{R}$.
Theorem (Symmetric matrix with spectrum between 0 and L)
Given x_{k} and $y_{k} \quad \forall k \in S$ and $G=(X Y)^{\top}(X Y)=\left(\begin{array}{cc}X^{\top} X & X^{\top} Y \\ Y^{\top} X & Y^{\top} Y\end{array}\right) \triangleq\left(\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right) \succeq 0$.
If $\exists Q$ symmetric : $0 \preceq Q \preceq L$ and $y_{k}=Q x_{k} \forall k=0, \ldots, N$ then

$$
\left\{\begin{array}{l}
B=B^{T}, \\
B \succeq \frac{C}{L} .
\end{array}\right.
$$

Interpolation conditions for symmetric matrices

Let $N \in \mathbb{N}, S=\{0, \ldots, N\}, X=\left(x_{0} \cdots x_{N}\right), Y=\left(y_{0} \cdots y_{N}\right)$ and $\mu \leq L \in \mathbb{R}$.
Theorem (Symmetric matrix with spectrum between μ and L)
Given x_{k} and $y_{k} \quad \forall k \in S$ and $G=(X Y)^{\top}(X Y)=\left(\begin{array}{ll}X^{\top} X & X^{\top} Y \\ Y^{\top} X & Y^{\top} Y\end{array}\right) \triangleq\left(\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right) \succeq 0$.
If $\exists Q$ symmetric : $\mu \mathrm{l} \preceq Q \preceq L I$ and $y_{k}=Q x_{k} \forall k=0, \ldots, N$ then

$$
\left\{\begin{array}{l}
B=B^{\top}, \\
B \succeq \frac{\mu L}{\mu+L} A+\frac{1}{\mu+L} C .
\end{array}\right.
$$

INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

$$
\text { Let } N \in \mathbb{N}, S=\{0, \ldots, N\}, X=\left(x_{0} \cdots x_{N}\right), Y=\left(y_{0} \cdots y_{N}\right) \text { and } \mu \leq L \in \mathbb{R} .
$$

Theorem (Symmetric matrix with spectrum between μ and L)
Given x_{k} and $y_{k} \quad \forall k \in S$ and $G=(X Y)^{\top}(X Y)=\left(\begin{array}{cc}X^{\top} X & X^{\top} Y \\ Y^{\top} X & Y^{\top} Y\end{array}\right) \triangleq\left(\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right) \succeq 0$.
If $\exists Q$ symmetric : $\mu \mathrm{I} \preceq Q \preceq L I$ and $y_{k}=Q x_{k} \forall k=0, \ldots, N$ then

$$
\left\{\begin{array}{l}
B=B^{T}, \\
B \succeq \frac{\mu L}{\mu+L} A+\frac{1}{\mu+L} C .
\end{array}\right.
$$

Remark :

- We can have the «only if» with a slightly modified theorem;
- We only consider homogeneous quadratic functions;
- A similar theorem exists for non-symmetric matrix with bounded singular values.

Outline

Performance Estimation Problem
 Interpolation conditions for linear mappings

Exploitation of new tool

PERFORMANCE OF GRADIENT METHOD ON QUADRATICS

Worst performance of $N=3$ steps of gradient method on $\min _{x} f(x)$ w.r.t. the step size h

- $f(x)=g(A x)=\frac{1}{2} x^{\top} Q x, g(y)=\frac{1}{2}\|y\|^{2}$
- $Q=A^{\top} A$ with $0 \preceq Q \preceq ।$

EXPLICIT EXPRESSIONS OF THE PERFORMANCES ON QUADRATICS

Smooth convex functions
Smooth convex quadratic

$$
f\left(x_{N}\right)-f^{*} \leq \frac{L R^{2}}{2}\left\{\begin{array}{ll}
\frac{1}{2 N h+1} & \text { if } h \in\left[0, h_{0}\right] \\
(1-h)^{2 N} & \text { if } h \in\left[h_{0}, \infty\right]
\end{array} \quad f\left(x_{N}\right)-f^{*} \leq \frac{L R^{2}}{2} \begin{cases}(1-h)^{2 N} & \text { if } h \in\left[0, \frac{1}{2 N+1}\right] \\
\frac{1}{h} \frac{(2 N)^{2 N}}{(2 N+1)^{2 N+1}} & \text { if } h \in\left[\frac{1}{2 N+1}, h_{1}\right] \\
(1-h)^{2 N} & \text { if } h \in\left[h_{1}, \infty\right]\end{cases}\right.
$$

Note: As in the general case, worst quadratic functions are one-dimensional.

INDEPENDENT EXISTING APPROACH TO ANALYZE FIRST-ORDER METHODS ON QUADRATIC FUNCTIONS

Worst-case performance of a first-order method on quadratic functions is
Polynomial approach

$$
\max _{\rho \in[\mu, L]} \frac{\rho}{2} R\left(1+\rho K_{N}(\rho)\right)^{2}
$$

where K_{N} is a polynomial of degree N that depends explicitly on the method.

INDEPENDENT EXISTING APPROACH TO ANALYZE FIRST-ORDER METHODS ON QUADRATIC FUNCTIONS

Worst-case performance of a first-order method on quadratic functions is

Polynomial approach

$$
\max _{\rho \in[\mu, L]} \frac{\rho}{2} R\left(1+\rho K_{N}(\rho)\right)^{2}
$$

where K_{N} is a polynomial of degree N that depends explicitly on the method.
It only works for quadratic functions!

Function class	PEP	Polynomial approach
Quadratics $\frac{1}{2} x^{\top} Q x$	OK	OK
$g(A x)$	OK	KO
$f(x)+g(A x)$	OK	KO
Class with matrices (except quadratics)	OK	KO

Performance of gradient method on $g(A x)$

Worst performance of $N=3$ steps of gradient method on $\min _{x} f(x)$ w.r.t. the step size h

- $f(x)=g(A x), g(y)$ smooth strongly convex
- $0 \preceq A \preceq I$

EXPLICIT EXPRESSIONS OF THE PERFORMANCES ON $g(A x)$

Smooth convex $f(x)$
Smooth convex g(Ax)

$$
\frac{L R^{2}}{2}\left\{\begin{array} { l l }
{ \frac { 1 } { 2 N h + 1 } } & { \text { if } h \in [0 , h _ { 0 }] } \\
{ (1 - h) ^ { 2 N } } & { \text { if } h \in [h _ { 0 } , \infty] }
\end{array} \quad \frac { L R ^ { 2 } } { 2 } \left\{\begin{array}{ll}
\frac{\kappa_{g}}{\kappa_{g}-1+\left(1-\kappa_{0} h\right)^{-2 N}} & \text { if } h \in\left[0, h_{2}\right] \\
\frac{\kappa_{0} \frac{h_{0}}{\kappa_{g}-1+\left(1-\kappa_{g} h_{0}\right)^{-2 N}}}{\left(1-h \in\left[h_{2}, h_{3}\right]\right.} \\
(1-h)^{2 N} & \text { if } h \in\left[h_{3}, \infty\right] \\
\hline
\end{array}\right.\right.
$$

PEP TO ANALYZE FUNCTIONS USING LINEAR MAPPING

State of the art:

- PEP gives worst-case performance of methods on a function class (for which interpolation conditions are available).

Our contribution :

- Extending PEP to methods and classes using linear mapping;
- Analyzing $\frac{1}{2} x^{\top} Q X, g(A x)$.

Future research : Analyzing more complex problems and methods (e.g. $f(x)+$ $g(A x)$, Chambolle-Pock, Condat-Vu) and identifying performance.

DEFINITIONS AND NOTATIONS

f is L-smooth when

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|
$$

First-order method of the form

$$
x_{N}=x_{0}-\sum_{i=0}^{N-1} h_{N, i} \nabla f\left(x_{i}\right)
$$

CASE $\mu=L$

Let $G=\left(\begin{array}{cc}A & B \\ B^{\top} & C\end{array}\right) \succeq 0$ and $\mu=L \in \mathbb{R}$.

Theorem
G can be written as $\left(\begin{array}{cc}X^{\top} X & X^{\top} Q X \\ X^{\top} Q X & X^{\top} Q^{2} X\end{array}\right)$ for a symmetric matrix Q with
$\mathrm{LI} \preceq Q$ Ł LI if and only if

$$
\begin{aligned}
& B=B^{T}, \\
& C \preceq L^{2} A .
\end{aligned}
$$

Interpolation condition for L-smooth convex functions

f L-smooth convex if and only if

$$
f(x) \geq f(y)+\nabla f^{\top}(y)(x-y)+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2} \quad \forall x, y
$$

$f L$-smooth convex : $f\left(x_{k}\right)=f_{k}, \quad \nabla f\left(x_{k}\right)=g_{k}$ if and only if

$$
f_{i} \geq f_{j}+g_{j}^{\top}\left(x_{i}-x_{j}\right)+\frac{1}{2 L}\left\|g_{i}-g_{j}\right\|^{2} \quad \forall i, j
$$

SDP FORMULATION

N steps of gradient method on L-smooth convex functions.

Matrix variable: $G=\left(g_{0} \ldots g_{N} x_{0}\right)^{T}\left(g_{0} \ldots g_{N} x_{0}\right) \in \mathbb{S}^{N+2}$
Parameters:

- $h_{i}=\left(0 \ldots 0 \frac{-1}{L} 0 \ldots 01\right) \in \mathbb{R}^{N+2}$
- $u_{i}=(0 \ldots 010 \ldots 0) \in \mathbb{R}^{N+2}$
- $2 A_{i j}=u_{j}\left(h_{i}-h_{j}\right)^{T}+\left(h_{i}-h_{j}\right) u_{j}^{T}+\frac{1}{L}\left(u_{i}-u_{j}\right)\left(u_{i}-u_{j}\right)^{T}$
- $A_{R}=u_{N+1} u_{N+1}^{\top}$

$$
\begin{array}{ll}
\max _{G \in \mathbb{S}^{N+2}, f \in \mathbb{R}^{N+1}} & f_{N}-f^{*} \\
\text { s.t. } & f_{j}-f_{i}+\operatorname{Tr}\left(G A_{i j}\right) \leq 0, \quad \forall i, j \\
& \operatorname{Tr}\left(G A_{i j}\right)-R^{2} \leq 0, \quad \forall i, j \\
& G \succeq 0 .
\end{array}
$$

