

PERFORMANCE ESTIMATION OF FIRST-ORDER OPTIMIZATION METHODS ON CONVEX FUNCTIONS COMPOSED WITH LINEAR MAPPINGS

Nizar Bousselmi François Glineur and Julien Hendrickx

Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) Université catholique de Louvain (UCLouvain)

Thesis supported by a FRIA grant

WORST-CASE PERFORMANCE OF A METHOD ON A CLASS OF FUNCTIONS

Common question in optimization :

Worst-case $\ensuremath{\text{performance}}$ of an optimization method $\ensuremath{\mathcal{M}}$ on

 $\min_{x} f(x)$

where $f \in \mathcal{F}$ has some properties (smoothness, convexity,...)?

WORST-CASE PERFORMANCE OF A METHOD ON A CLASS OF FUNCTIONS

Common question in optimization :

Worst-case performance of an optimization method ${\boldsymbol{\mathcal{M}}}$ on

 $\min_{x} f(x)$

where $f \in \mathcal{F}$ has some properties (smoothness, convexity,...)?

 \mathcal{M}

Example :

Worst-case performance of gradient method on L-smooth convex functions after N iterations ?

$$\underbrace{f(x_N) - f^*}_{f(x_N) - f^*} \le \frac{L}{2} \frac{1}{2N+1}.$$

PERFORMANCE ESTIMATION PROBLEM (PEP)

Theoretical and practical framework to analyze **performance** of optimization methods on problem classes.

- Performance of first-order methods...Drori & Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

PERFORMANCE ESTIMATION PROBLEM (PEP)

Theoretical and practical framework to analyze **performance** of optimization methods on problem classes.

- Performance of first-order methods...Drori & Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

PERFORMANCE ESTIMATION PROBLEM (PEP)

Theoretical and practical framework to analyze **performance** of optimization methods on problem classes.

- Performance of first-order methods...Drori & Teboulle 2013
- Convex interpolation and performance estimation...Taylor 2017

Example :

PEP IS WELL DEVELOPED

Large number of methods and function classes already analyzed through PEP

- Smooth convex and smooth strongly convex functions; [Taylor, Hendrickx, Glineur]
- Constrained optimization (projected gradient); [Taylor, Glineur, Hendrickx]
- Non-smooth optimization (subgradient, proximal operators); [Taylor, Glineur, Hendrickx]
- Non-convex and hypo-convex functions [Rotaru, Glineur, Patrinos], [Abbaszadehpeivasti, de Klerk, Zamani]
- Stochastic optimization;
- Decentralized optimization; [Colla, Hendrickx]
- · Coordinate descent method;
- etc.

PEP IS WELL DEVELOPED

Large number of methods and function classes already analyzed through PEP

- Smooth convex and smooth strongly convex functions; [Taylor, Hendrickx, Glineur]
- Constrained optimization (projected gradient); [Taylor, Glineur, Hendrickx]
- Non-smooth optimization (subgradient, proximal operators); [Taylor, Glineur, Hendrickx]
- Non-convex and hypo-convex functions [Rotaru, Glineur, Patrinos], [Abbaszadehpeivasti, de Klerk, Zamani]
- Stochastic optimization;
- Decentralized optimization; [Colla, Hendrickx]
- · Coordinate descent method;
- etc.
- Our contribution: Convex functions composed with linear mappings.

Performance Estimation Problem

Interpolation conditions for linear mappings

Exploitation of new tool

Example:

- *N* steps of gradient method $x_{k+1} = x_k \frac{1}{L}\nabla f(x_k)$
- L-smooth convex functions f

PEP

$$\max_{\substack{\text{points } x_k, x^*, \text{ function } f}} f(x_N) - f(x^*)$$

s.t.
$$f L\text{-smooth convex},$$
$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$
$$||x^* - x_0|| \le 1,$$
$$\nabla f(x^*) = 0.$$

Example:

- *N* steps of gradient method $x_{k+1} = x_k \frac{1}{L}\nabla f(x_k)$
- L-smooth convex functions f

PEP

$$\max_{\substack{\text{points } x_k, x^*, \text{ function } f}} f(x_N) - f(x^*)$$

s.t.
$$f L\text{-smooth convex,}$$
$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k),$$
$$||x^* - x_0|| \le 1,$$
$$\nabla f(x^*) = 0.$$

Example:

- *N* steps of gradient method $x_{k+1} = x_k \frac{1}{L}\nabla f(x_k)$
- *L*-smooth convex functions *f*

PEP

 $\max_{\text{points } x_k, x^*, \text{ function } f} f(x_N) - f(x^*)$

s.t.

fL-smooth convex,

$$\begin{aligned} x_{k+1} &= x_k - \frac{1}{L} \nabla f(x_k), \\ ||x^* - x_0|| &\leq 1, \\ \nabla f(x^*) &= 0. \end{aligned}$$

Example:

- *N* steps of gradient method $x_{k+1} = x_k \frac{1}{L}\nabla f(x_k)$
- L-smooth convex functions f

PEP

Example:

- *N* steps of gradient method $x_{k+1} = x_k \frac{1}{L}\nabla f(x_k)$
- L-smooth convex functions f

PEP solved

Output :

- Worst performance : $f(x_N) f^* \le \frac{L}{2} \frac{1}{2N+1}$ for any N;
- Worst function for N = 3 and L = 1:

f infinite-dimensional but only access to x_k , $f(x_k)$, $\nabla f(x_k)$... black-box property !

PEP

$$\begin{array}{ll} \max_{\text{points } x_k, x^*, \text{function } f} & f(x_N) - f(x^*) \\ \text{s.t.} & f L \text{-smooth convex,} \end{array}$$

$$\begin{aligned} x_{k+1} &= x_k - \frac{1}{L} \nabla f(x_k) \\ ||x^* - x_0|| &\leq 1, \\ \nabla f(x^*) &= 0. \end{aligned}$$

f infinite-dimensional but only access to x_k , $f(x_k)$, $\nabla f(x_k)$... black-box property !

PEP

$$\max_{\substack{\text{points } x_k, x^*, f_k, f^*, g_k, g^*}} f_N - f^*$$
s.t.
$$\exists f L\text{-smooth convex} : f(x_k) = f_k, \ \nabla f(x_k) = g_k,$$

$$f(x^*) = f^*, \ \nabla f(x^*) = g^*,$$

$$x_{k+1} = x_k - \frac{1}{L}g_k,$$

$$||x^* - x_0|| \le 1,$$

$$g^* = 0.$$

f infinite-dimensional but only access to x_k , $f(x_k)$, $\nabla f(x_k)$... black-box property !

PEP

$$\max_{points x_k, x^*, f_k, f^*, g_k, g^*} f_N - f^*$$
s.t.

$$\exists f L\text{-smooth convex} : f(x_k) = f_k, \quad \nabla f(x_k) = g_k,$$

$$f(x^*) = f^*, \quad \nabla f(x^*) = g^*,$$

$$x_{k+1} = x_k - \frac{1}{L}g_k,$$

$$||x^* - x_0|| \le 1,$$

$$g^* = 0.$$

Interpolation condition to reformulate.

f infinite-dimensional but only access to x_k , $f(x_k)$, $\nabla f(x_k)$... black-box property !

PEP

$$\max_{\substack{\text{points } x_k, x^*, f_k, f^*, g_k, g^*}} f_N - f^*$$

s.t.
$$f_j \ge f_k + g_k^T (x_j - x_k) + \frac{1}{2L} ||g_j - g_k||^2,$$
$$x_{k+1} = x_k - \frac{1}{L} g_k,$$
$$||x^* - x_0|| \le 1,$$
$$g^* = 0.$$

Interpolation condition to reformulate.

Can be reformulated as convex **semidefinite problem**, efficiently solvable !

Interpolation conditions for *L*-smooth convex functions Given x_k , g_k and f_k $\forall k = 0, ..., N$, $\exists L$ -smooth convex f such that $\begin{cases} f(x_k) = f_k \ \forall k = 0, ..., N, \\ \nabla f(x_k) = g_k \ \forall k = 0, ..., N, \end{cases}$ if and only if $f_j \ge f_k + g_k^T(x_j - x_k) + \frac{1}{2L} ||g_j - g_k||^2 \quad \forall j, k = 0, ..., N.$ Interpolation conditions for *L*-smooth convex functions Given x_k , g_k and f_k $\forall k = 0, ..., N$, $\exists L$ -smooth convex f such that $\begin{cases} f(x_k) = f_k \ \forall k = 0, ..., N, \\ \nabla f(x_k) = g_k \ \forall k = 0, ..., N, \end{cases}$ if and only if $f_j \ge f_k + g_k^T(x_j - x_k) + \frac{1}{2L} ||g_j - g_k||^2 \quad \forall j, k = 0, ..., N.$

Remark : Interpolation conditions (and PEP formulation) exist for numerous function classes : non-smooth, *L*-smooth, convex, μ-strongly convex,etc

Remarks :

- Theory [Nesterov98] suggests a step size of $\frac{1}{L}$ while PEP recommends $\approx \frac{1.834}{L}$ to optimize the worst-case;
- PEP provides tight results;
- PEP guarantees a performance \approx 10 times better than theory.

Performance Estimation Problem

Interpolation conditions for linear mappings

Exploitation of new tool

Function class	Hypothesis
f(x) = g(Ax)	g smooth (strongly) convex
$f(x) = g(Ax) = \frac{1}{2}x^{T}QX$ (quadratic functions)	$g(y) = \frac{1}{2} y ^2$ and $Q = A^T A$
f(x) = h(x) + g(Ax)	h, g smooth (strongly) convex

Function class	Hypothesis
f(x) = g(Ax)	g smooth (strongly) convex
$f(x) = g(Ax) = \frac{1}{2}x^{T}QX$ (quadratic functions)	$g(y) = \frac{1}{2} y ^2$ and $Q = A^T A$
f(x) = h(x) + g(Ax)	h, g smooth (strongly) convex

Function class	Hypothesis
f(x) = g(Ax)	g smooth (strongly) convex
$f(x) = g(Ax) = \frac{1}{2}x^{T}QX$ (quadratic functions)	$g(y) = \frac{1}{2} y ^2$ and $Q = A^T A$
f(x) = h(x) + g(Ax)	h, g smooth (strongly) convex

Function class	Hypothesis
f(x) = g(Ax)	g smooth (strongly) convex

Gradient method on f(x) = g(Ax) with $A = A^T$: $x_{k+1} = x_k - \frac{h}{L}A\nabla g(Ax_k)$

Function class	Hypothesis
f(x) = g(Ax)	g smooth (strongly) convex

Gradient method on f(x) = g(Ax) with $A = A^T$: $x_{k+1} = x_k - \frac{h}{L}A\nabla g(Ax_k)$

or equivalently, decomposing operations for each step

$$\begin{cases} y_k = Ax_k \\ u_k = \nabla g(y_k) \\ v_k = Au_k \\ x_{k+1} = x_k - \frac{h}{L}v_k \end{cases}$$

Function class	Hypothesis
f(x) = g(Ax)	g smooth (strongly) convex

Gradient method on f(x) = g(Ax) with $A = A^T$: $x_{k+1} = x_k - \frac{h}{L}A\nabla g(Ax_k)$

or equivalently, decomposing operations for each step

y _k	$=Ax_k$	New interpolation conditions
U _k	$= \nabla g(y_k)$	Standard interpolation conditions
V _k	$= Au_k$	New interpolation conditions
X_{k+1}	$= X_k - \frac{h}{L}V_k$	Standard

Let
$$N \in \mathbb{N}$$
, $S = \{0, \ldots, N\}$, $X = (x_0 \cdots x_N)$, $Y = (y_0 \cdots y_N)$ and $L \in \mathbb{R}$.

Theorem (Symmetric matrix with spectrum between 0 and L)

Given
$$x_k$$
 and y_k $\forall k \in S$ and $G = (X Y)^T (X Y) = \begin{pmatrix} X^T X & X^T Y \\ Y^T X & Y^T Y \end{pmatrix} \triangleq \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \succeq 0.$
If $\exists Q$ symmetric : $0 \preceq Q \preceq L$ and $y_k = Qx_k$ $\forall k = 0, \dots, N$ then

$$\begin{cases} B = B^{\mathsf{T}}, \\ B \succeq \frac{\mathsf{C}}{\mathsf{L}}. \end{cases}$$

Let $N \in \mathbb{N}$, $S = \{0, \dots, N\}$, $X = (x_0 \cdots x_N)$, $Y = (y_0 \cdots y_N)$ and $\mu \leq L \in \mathbb{R}$.

Theorem (Symmetric matrix with spectrum between μ and L)

Given x_k and y_k $\forall k \in S$ and $G = (X Y)^T (X Y) = \begin{pmatrix} X^T X & X^T Y \\ Y^T X & Y^T Y \end{pmatrix} \triangleq \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \succeq 0.$ If $\exists Q$ symmetric : $\mu I \preceq Q \preceq LI$ and $y_k = Qx_k$ $\forall k = 0, \dots, N$ then

$$\begin{cases} B = B^{\mathsf{T}}, \\ B \succeq \frac{\mu L}{\mu + L} A + \frac{1}{\mu + L} C \end{cases}$$

Let $N \in \mathbb{N}$, $S = \{0, \dots, N\}$, $X = (x_0 \cdots x_N)$, $Y = (y_0 \cdots y_N)$ and $\mu \leq L \in \mathbb{R}$.

Theorem (Symmetric matrix with spectrum between μ and L)

Given
$$x_k$$
 and y_k $\forall k \in S$ and $G = (X Y)^T (X Y) = \begin{pmatrix} X^T X & X^T Y \\ Y^T X & Y^T Y \end{pmatrix} \triangleq \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \succeq 0.$
If $\exists Q$ symmetric : $\mu l \preceq Q \preceq Ll$ and $y_k = Qx_k$ $\forall k = 0, \dots, N$ then

$$\begin{cases} B = B^{T}, \\ B \succeq \frac{\mu L}{\mu + L} A + \frac{1}{\mu + L} C \end{cases}$$

Remark :

- We can have the «only if» with a slightly modified theorem;
- We only consider homogeneous quadratic functions;
- A similar theorem exists for **non-symmetric** matrix with bounded singular values.

Performance Estimation Problem

Interpolation conditions for linear mappings

Exploitation of new tool

PERFORMANCE OF GRADIENT METHOD ON QUADRATICS

Worst performance of N = 3 steps of gradient method on min_x f(x) w.r.t. the step size h

•
$$f(x) = g(Ax) = \frac{1}{2}x^{T}Qx, g(y) = \frac{1}{2}||y||^{2}$$

• $Q = A^T A$ with $0 \leq Q \leq I$

Smooth convex functions		Smooth convex	quadratic	
$f(x_N) - f^* \le \frac{LR^2}{2} \begin{cases} \frac{1}{2Nh+1} \\ (1-h)^{2N} \end{cases}$	if $h \in [0, h_0]$ if $h \in [h_0, \infty]$	$f(x_N)-f^*\leq \frac{LR^2}{2}$	$\begin{cases} (1-h)^{2N} \\ \frac{1}{h} \frac{(2N)^{2N}}{(2N+1)^{2N+1}} \\ (1-h)^{2N} \end{cases}$	if $h \in [0, \frac{1}{2N+1}]$ if $h \in [\frac{1}{2N+1}, h_1]$ if $h \in [h_1, \infty]$

Note : As in the general case, worst quadratic functions are one-dimensional.

INDEPENDENT EXISTING APPROACH TO ANALYZE FIRST-ORDER METHODS ON QUADRATIC FUNCTIONS

Worst-case performance of a first-order method on quadratic functions is

Polynomial approach

$$\max_{\mu \in [\mu,L]} \frac{\rho}{2} R (1 + \rho K_N(\rho))^2$$

where K_N is a polynomial of degree N that depends explicitly on the method.

INDEPENDENT EXISTING APPROACH TO ANALYZE FIRST-ORDER METHODS ON QUADRATIC FUNCTIONS

Worst-case performance of a first-order method on quadratic functions is

Polynomial approach

$$\max_{\in [\mu,L]} \frac{\rho}{2} R (1 + \rho K_N(\rho))^2$$

where K_N is a polynomial of degree N that depends explicitly on the method.

It only works for quadratic functions !

Function class	PEP	Polynomial approach
Quadratics $\frac{1}{2}x^TQx$	OK	ОК
g(Ax)	ОК	КО
f(x) + g(Ax)	ОК	КО
Class with matrices (except quadratics)	ОК	КО

PERFORMANCE OF GRADIENT METHOD ON g(Ax)

Worst performance of N = 3 steps of gradient method on $\min_x f(x)$ w.r.t. the step size h

- f(x) = g(Ax), g(y) smooth strongly convex
- \cdot 0 \leq A \leq /

PEP TO ANALYZE FUNCTIONS USING LINEAR MAPPING

State of the art :

• *PEP* gives **worst-case performance** of **methods** on a **function class** (for which interpolation conditions are available).

Our contribution :

- Extending PEP to methods and classes using linear mapping;
- Analyzing $\frac{1}{2}x^TQX$, g(Ax).

Future research : Analyzing more complex problems and methods (e.g. f(x) + g(Ax), Chambolle-Pock, Condat-Vu) and identifying performance.

f is *L*-smooth when

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||.$$

First-order method of the form

$$x_N = x_0 - \sum_{i=0}^{N-1} h_{N,i} \nabla f(x_i).$$

 $\mathbf{CASE}\; \boldsymbol{\mu} = \boldsymbol{L}$

Let
$$G = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \succeq 0$$
 and $\mu = L \in \mathbb{R}$.

Theorem

G can be written as
$$\begin{pmatrix} X^TX & X^TQX \\ X^TQX & X^TQ^2X \end{pmatrix}$$
 for a symmetric matrix Q with
LI $\leq Q \leq LI$ if and only if
 $B = B^T$,
 $C \leq L^2A$.

f L-smooth convex if and only if

$$f(x) \ge f(y) + \nabla f^{\mathsf{T}}(y)(x-y) + \frac{1}{2L} ||\nabla f(x) - \nabla f(y)||^2 \quad \forall x, y$$

fL-smooth convex : $f(x_k) = f_k$, $\nabla f(x_k) = g_k$ if and only if

$$f_i \ge f_j + g_j^T(x_i - x_j) + \frac{1}{2L}||g_i - g_j||^2 \quad \forall i, j$$

SDP FORMULATION

N steps of gradient method on *L*-smooth convex functions.

Matrix variable: $G = (g_0 \ldots g_N x_0)^T (g_0 \ldots g_N x_0) \in \mathbb{S}^{N+2}$ Parameters:

•
$$h_i = (0 \dots 0 \frac{-1}{L} 0 \dots 0 1) \in \mathbb{R}^{N+2}$$

• $u_i = (0 \dots 0 1 0 \dots 0) \in \mathbb{R}^{N+2}$

•
$$2A_{ij} = u_j(h_i - h_j)^T + (h_i - h_j)u_j^T + \frac{1}{L}(u_i - u_j)(u_i - u_j)^T$$

•
$$A_R = u_{N+1} u_{N+1}^T$$

$$\max_{G \in \mathbb{S}^{N+2}, f \in \mathbb{R}^{N+1}} f_N - f^*$$

s.t.
$$f_j - f_i + \operatorname{Tr}(GA_{ij}) \le 0, \quad \forall i, j$$
$$\operatorname{Tr}(GA_{ij}) - R^2 \le 0, \quad \forall i, j$$
$$G \succeq 0.$$