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WORST-CASE PERFORMANCE OF A METHOD ON A CLASS OF FUNCTIONS

Common question in optimization :

Worst-case performance of an optimization methodM on

min
x
f(x)

where f ∈ F has some properties (smoothness, convexity,…) ?

Example :

Worst-case performance of
M︷ ︸︸ ︷

gradient method on
F︷ ︸︸ ︷

L-smooth convex functions after N
iterations ?

performance︷ ︸︸ ︷
f(xN) − f∗ ≤ L

2
1

2N+ 1 .
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PERFORMANCE ESTIMATION PROBLEM (PEP)

Theoretical and practical framework to analyze performance of optimization
methods on problem classes.

• Performance of first-order methods…Drori & Teboulle 2013
• Convex interpolation and performance estimation…Taylor 2017

Example :
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PEP IS WELL DEVELOPED

Large number of methods and function classes already analyzed through PEP
• Smooth convex and smooth strongly convex functions; [Taylor, Hendrickx, Glineur]

• Constrained optimization (projected gradient); [Taylor, Glineur, Hendrickx]

• Non-smooth optimization (subgradient, proximal operators); [Taylor, Glineur, Hendrickx]

• Non-convex and hypo-convex functions [Rotaru, Glineur, Patrinos], [Abbaszadehpeivasti, de Klerk, Zamani]

• Stochastic optimization;
• Decentralized optimization; [Colla, Hendrickx]

• Coordinate descent method;
• etc.

• Our contribution: Convex functions composed with linear mappings.
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OUTLINE

Performance Estimation Problem

Interpolation conditions for linear mappings

Exploitation of new tool

4



INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

• N steps of gradient method xk+1 = xk − 1
L∇f(xk)

• L-smooth convex functions f

PEP

max
points xk,x∗, function f

f(xN)− f(x∗)

s.t. f L-smooth convex,

xk+1 = xk −
1
L∇f(xk),

||x∗ − x0|| ≤ 1,
∇f(x∗) = 0.
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INPUT = OPTIMIZATION METHOD + PROBLEM CLASS
OUTPUT = WORST INSTANCE IN PROBLEM CLASS

Example:

• N steps of gradient method xk+1 = xk − 1
L∇f(xk)

• L-smooth convex functions f

PEP solved
Output :

• Worst performance : f(xN)− f∗ ≤ L
2

1
2N+1 for any N;

• Worst function for N = 3 and L = 1:
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PEP AS FINITE-DIMENSIONAL PROBLEM

f infinite-dimensional but only access to xk, f(xk), ∇f(xk) … black-box property !
PEP

max
points xk,x∗,function f

f(xN)− f(x∗)

s.t. f L-smooth convex,

∃f L-smooth convex :

xk+1 = xk −
1
L∇f(xk),

||x∗ − x0|| ≤ 1,
∇f(x∗) = 0.

Interpolation condition to reformulate.

Can be reformulated as convex semidefinite problem, efficiently solvable !
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CURRENTLY FORMULABLE PEP

Interpolation conditions for L-smooth convex functions
Given xk, gk and fk ∀k = 0, . . . ,N,

∃ L-smooth convex f such that

f(xk) = fk ∀k = 0, . . . ,N,
∇f(xk) = gk ∀k = 0, . . . ,N,

if and only if

fj ≥ fk + gTk(xj − xk) +
1
2L ||gj − gk||2 ∀j, k = 0, . . . ,N.

Remark : Interpolation conditions (and PEP formulation) exist for numerous
function classes : non-smooth, L-smooth, convex, µ-strongly convex,etc
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EXPLOITATION OF PEP

Accuracy after 10 steps of gradient method on L-smooth convex functions for varying step size h
L

Remarks :
• Theory [Nesterov98] suggests a step size of 1L while PEP recommends ≈

1.834
L

to optimize the worst-case;
• PEP provides tight results;
• PEP guarantees a performance ≈ 10 times better than theory.
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OUTLINE

Performance Estimation Problem

Interpolation conditions for linear mappings

Exploitation of new tool
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EXTENSION OF PEP : FUNCTIONS USING LINEAR MAPPING

Goal : Analyze worst performance of methods on minx f(x) for f using linear
mapping.

Function class Hypothesis

f(x) = g(Ax) g smooth (strongly) convex

f(x) = g(Ax) = 1
2x
TQX (quadratic functions) g(y) = 1

2 ||y||
2 and Q = ATA

Gradient method on f(x) = g(Ax) with A = AT : xk+1 = xk − h
LA∇g(Axk)

or equivalently, decomposing operations for each step
yk = Axk

New interpolation conditions

uk = ∇g(yk)

Standard interpolation conditions

vk = Auk

New interpolation conditions

xk+1 = xk − h
L vk

Standard
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INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

Let N ∈ N, S = {0, . . . ,N}, X = (x0 · · · xN), Y = (y0 · · · yN) and L ∈ R.

Theorem (Symmetric matrix with spectrum between 0 and L)

Given xk and yk ∀k ∈ S and G = (X Y)T(X Y) =
(
XTX XTY
YTX YTY

)
≜
(
A B
BT C

)
⪰ 0.

If ∃Q symmetric : 0 ⪯ Q ⪯ L and yk = Qxk ∀k = 0, . . . ,N thenB = BT,
B ⪰ C

L .

Remark :

• We can have the «only if» with a slightly modified theorem;
• We only consider homogeneous quadratic functions;
• A similar theorem exists for non-symmetric matrix with bounded singular
values.

11



INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

Let N ∈ N, S = {0, . . . ,N}, X = (x0 · · · xN), Y = (y0 · · · yN) and µ ≤ L ∈ R.

Theorem (Symmetric matrix with spectrum between µ and L)

Given xk and yk ∀k ∈ S and G = (X Y)T(X Y) =
(
XTX XTY
YTX YTY

)
≜
(
A B
BT C

)
⪰ 0.

If ∃Q symmetric : µI ⪯ Q ⪯ LI and yk = Qxk ∀k = 0, . . . ,N thenB = BT,
B ⪰ µL

µ+LA+
1

µ+LC.

Remark :

• We can have the «only if» with a slightly modified theorem;
• We only consider homogeneous quadratic functions;
• A similar theorem exists for non-symmetric matrix with bounded singular
values.

11



INTERPOLATION CONDITIONS FOR SYMMETRIC MATRICES

Let N ∈ N, S = {0, . . . ,N}, X = (x0 · · · xN), Y = (y0 · · · yN) and µ ≤ L ∈ R.

Theorem (Symmetric matrix with spectrum between µ and L)

Given xk and yk ∀k ∈ S and G = (X Y)T(X Y) =
(
XTX XTY
YTX YTY

)
≜
(
A B
BT C

)
⪰ 0.

If ∃Q symmetric : µI ⪯ Q ⪯ LI and yk = Qxk ∀k = 0, . . . ,N thenB = BT,
B ⪰ µL

µ+LA+
1

µ+LC.

Remark :

• We can have the «only if» with a slightly modified theorem;
• We only consider homogeneous quadratic functions;
• A similar theorem exists for non-symmetric matrix with bounded singular
values.

11



OUTLINE

Performance Estimation Problem

Interpolation conditions for linear mappings

Exploitation of new tool

12



PERFORMANCE OF GRADIENT METHOD ON QUADRATICS

Worst performance of N = 3 steps of gradient method on minx f(x) w.r.t. the step size h

• f(x) = g(Ax) = 1
2x
TQx, g(y) = 1

2 ||y||
2

• Q = ATA with 0 ⪯ Q ⪯ I
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EXPLICIT EXPRESSIONS OF THE PERFORMANCES ON QUADRATICS

Smooth convex functions Smooth convex quadratic

f(xN)− f∗ ≤ LR2
2

{
1

2Nh+1 if h ∈ [0,h0]
(1− h)2N if h ∈ [h0,∞]

f(xN)− f∗ ≤ LR2
2


(1− h)2N if h ∈ [0, 1

2N+1 ]

1
h

(2N)2N
(2N+1)2N+1 if h ∈ [ 1

2N+1 ,h1]

(1− h)2N if h ∈ [h1,∞]

Note : As in the general case, worst quadratic functions are one-dimensional.
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INDEPENDENT EXISTING APPROACH TO ANALYZE FIRST-ORDER METHODS ON QUADRATIC
FUNCTIONS

Worst-case performance of a first-order method on quadratic functions is
Polynomial approach

max
ρ∈[µ,L]

ρ

2R
(
1+ ρKN(ρ)

)2
where KN is a polynomial of degree N that depends explicitly on the method.

It only works for quadratic functions !

Function class PEP Polynomial approach

Quadratics 1
2x
TQx OK OK

g(Ax) OK KO
f(x) + g(Ax) OK KO
Class with matrices (except quadratics) OK KO
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PERFORMANCE OF GRADIENT METHOD ON g(Ax)

Worst performance of N = 3 steps of gradient method on minx f(x) w.r.t. the step size h

• f(x) = g(Ax), g(y) smooth strongly convex
• 0 ⪯ A ⪯ I
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EXPLICIT EXPRESSIONS OF THE PERFORMANCES ON g(Ax)

Smooth convex f(x) Smooth convex g(Ax)

LR2
2

 1
2Nh+1 if h ∈ [0,h0]
(1− h)2N if h ∈ [h0,∞]

LR2
2


κg

κg−1+(1−κgh)−2N if h ∈ [0,h2]
κg

h0
h

κg−1+(1−κgh0)−2N if h ∈ [h2,h3]

(1− h)2N if h ∈ [h3,∞]
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PEP TO ANALYZE FUNCTIONS USING LINEAR MAPPING

State of the art :
• PEP gives worst-case performance of methods on a function class (for
which interpolation conditions are available).

Our contribution :
• Extending PEP to methods and classes using linear mapping;
• Analyzing 1

2x
TQX, g(Ax).

Future research : Analyzing more complex problems andmethods (e.g. f(x)+
g(Ax), Chambolle-Pock, Condat-Vu) and identifying performance.
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DEFINITIONS AND NOTATIONS

f is L-smooth when
||∇f(x)−∇f(y)|| ≤ L||x− y||.

First-order method of the form

xN = x0 −
N−1∑
i=0

hN,i∇f(xi).



CASE µ = L

Let G =

(
A B
BT C

)
⪰ 0 and µ = L ∈ R.

Theorem

G can be written as
(
XTX XTQX
XTQX XTQ2X

)
for a symmetric matrix Q with

LI ⪯ Q ⪯ LI if and only if

B = BT,
C ⪯ L2A.



INTERPOLATION CONDITION FOR L-SMOOTH CONVEX FUNCTIONS

f L-smooth convex if and only if

f(x) ≥ f(y) +∇fT(y)(x− y) + 1
2L ||∇f(x)−∇f(y)||2 ∀x, y

f L-smooth convex : f(xk) = fk, ∇f(xk) = gk if and only if

fi ≥ fj + gTj (xi − xj) +
1
2L ||gi − gj||2 ∀i, j



SDP FORMULATION

N steps of gradient method on L-smooth convex functions.

Matrix variable: G = (g0 . . . gN x0)T(g0 . . . gN x0) ∈ SN+2

Parameters:

• hi = (0 . . . 0 −1
L 0 . . . 0 1) ∈ RN+2

• ui = (0 . . . 0 1 0 . . . 0) ∈ RN+2

• 2Aij = uj(hi − hj)T + (hi − hj)uTj +
1
L(ui − uj)(ui − uj)T

• AR = uN+1uTN+1

max
G∈SN+2,f∈RN+1

fN − f∗

s.t. fj − fi + Tr(GAij) ≤ 0, ∀i, j
Tr(GAij)− R2 ≤ 0, ∀i, j
G ⪰ 0.
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